Plants in constructed wetlands serve as carriers for attached microbial growth. They mainly transfer oxygen and release exudates into the root zone. As a result, an area exists around the roots (rhizosphere) in which bacteria are stimulated by root growth. Our goals were to ascertain whether stimulating the microbial community only has a local effect on the rhizoplane, and to establish the importance of this stimulation for wastewater purification in the root zone. Observations were carried out in a planted and an unplanted laboratory batch reactor incubated with an artificial wastewater with a high concentration of ammonia. Samples were taken at intervals of 10 mm away from the roots. The chemical and physical conditions and enzyme activities in soil sections at various distances from the roots affecting the efficiency of microbial nitrogen removal were characterized. An influence on the nitrification and denitrification process was detected via several parameters up to a range of different root distances: microbial parameters such as the total bacterial number, respiratory activity, protein and DNA amount seem to be affected by roots up to a distance of 50 mm from the roots, whereas the oxygen concentration, DOC and redox potential are unaffected at a distance exceeding 20-30 mm. This indicates that improved nitrogen removal is also possible in the wider root surroundings. Given the average root-to-root distance of 35 mm, the root-influenced area could therefore be expanded to the whole rooted zone in a constructed wetland.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24270 |
Date | 21 July 2003 |
Creators | Münch, Christiane |
Contributors | Röske, Isolde, Uhlmann, Dietrich, Stottmeister, Ulrich |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds