Return to search

A Probabilistic Schedule Delay Analysis In Construction Projects By Using Fuzzy Logic Incorporated With Relative Importance Index (rii) Method

The aim of this thesis is to propose a decision support tool for contractors before the bidding stage to quantify the probability of schedule delay in construction projects by using fuzzy logic incorporated with relative importance index (RII) method. Eighty three (83) different schedule delay factors were identified through detailed literature review and interview with experts from a leading Turkish construction company, then categorized into nine (9) groups and visualized by utilizing Ishikawa (Fish Bone) Diagrams. The relative importances of schedule delay factors were quantified by relative importance index (RII) method and the ranking of the factors and groups were demonstrated according to their importance level on schedule delay. A schedule delay assessment model was proposed by using Fuzzy Theory in order to determine a realistic time contingency by taking into account of delay factors characterized in construction projects. The assessment model was developed by using Fuzzy Logic Toolbox of the MATLAB Program Software. Proposed methodology was tested in a real case study and probability of schedule delay was evaluated by the assessment model after the required inputs were inserted to software. According to the case study results, the most contributing factors and groups (that need attention) to the probability of schedule delays were discussed. The assessment model results were found to be conceivably acceptable and adequate for the purpose of this thesis.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612169/index.pdf
Date01 July 2010
CreatorsOzdemir, Mustafa
ContributorsGunduz, Murat
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0019 seconds