No / Degrading infrastructure and applications of structural demolition create tremendous amounts of construction and demolition waste (CDW) all around the world. To address this issue in an effective way, recycling CDW in a most appropriate way has become a global concern in recent years. To this end, this study focused on the utilization of CDW-based materials such as hollow brick (HB), red clay brick (RCB), roof tile (RT), glass (G) and concrete (C) in the production of geopolymer mortars. These materials were first collected from an urban transformation area and then subjected to an identical two-step crushing-milling procedure to provide sufficient fineness for geopolymerization. To investigate the influence of blast furnace slag (S) addition to the CDW-based mixtures, 20% S substituted mixture designs were also made. Fine recycled concrete aggregates (FRCA) obtained from crushing and sieving of the waste concrete were used as the aggregate. A series of mixtures were designed using different proportions of three distinct alkali activators such as sodium hydroxide (NaOH), sodium silicate (Na2SiO3) and calcium hydroxide (Ca[OH]2). To improve their applicability, the mixtures were left to cure at room temperature rather than the heat curing which is frequently applied in the literature. After 28 days of ambient curing, the 100% CDW-based geopolymer mortar activated with three different activators reached a compressive strength of 31.6 MPa, whereas the 20% S substituted geopolymer mortar achieved a compressive strength of 51.9 MPa. While the geopolymer mortars activated with only NaOH exhibited poor performance, it was found that the use of Na2SiO3 and Ca(OH)2 improved the compressive strength. Main geopolymerization products were related to NASH, CASH, and C(N)ASH gel formations. Our results demonstrated that mixed CDW-based materials can be employed in the manufacturing geopolymers, making them potential alternatives to Portland cement-based systems by being eco-friendly, energy-efficient, and comparable in compressive strength. / This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 894100.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/19362 |
Date | 21 February 2023 |
Creators | Yildirim, Gurkan, Ashour, Ashraf F., Ozcelikci, E., Gunal, M.F., Ozel, B.F., Alhawat, Musab M. |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Conference paper, No full-text in the repository |
Rights | Unspecified |
Page generated in 0.0018 seconds