Return to search

Ca2+ signalling between the endoplasmic reticulum and lysosomes

Ca2+ is a universal and versatile intracellular messenger, regulating a vast array of biological processes due to variations in the frequency, amplitude, spatial and temporal dynamics of Ca2+ signals. Increases in cytosolic free Ca2+ concentration ([Ca2+]c) are due to influx from either an infinite extracellular Ca2+ pool or from the more limited intracellular Ca2+ stores. Stimulation of the endogenous muscarinic (M3) receptors of human embryonic kidney (HEK) cells with carbachol results in the activation of phospholipase C (PLC) and formation of inositol 1,4,5-trisphosphate (IP3), activation of IP3 receptors (IP3Rs), release of Ca2+ from the endoplasmic reticulum (ER), and activation of store-operated Ca2+ entry (SOCE). Lysosomes are the core digestive compartments of the cell, but their importance as signalling organelles is also now widely appreciated. Accumulating evidence indicates that lysosomal Ca2+ is important for their physiological functions. Lysosomal Ca2+ release triggers fusion during membrane trafficking and, through calmodulin, it regulates lysosome size. Luminal Ca2+ is critical for regulation of lysosomal biogenesis and autophagy during starvation through the transcription factor, TFEB. Furthermore, aberrant lysosomal Ca2+ is associated with some lysosomal storage diseases. Lysosomes in mammalian cells have long been suggested to accumulate Ca2+ via a low-affinity Ca2+-H+ exchanger (CAX). This is consistent with evidence that dissipating the lysosomal H+ gradient increased [Ca2+]c and decreased lysosomal free [Ca2+], and with the observation that lysosomal Ca2+ uptake was followed by an increase in pHly. Furthermore, heterologous expression of Xenopus CAX in mammalian cells attenuated carbachol-evoked Ca2+ signals. However, there is no known CAX in mammalian cells, and so the identity of the lysosomal Ca2+ uptake pathway in mammalian cells is unresolved. Using mammalian cells loaded with a fluorescent Ca2+ indicator, I show that dissipating the pHly gradient pharmacologically or by siRNA-mediated knockdown of an essential subunit of the H+ pump, increases the amplitude of IP3-evoked cytosolic Ca2+ signals without affecting those evoked by SOCE. A genetically encoded low-affinity Ca2+ sensor expressed on the lysosome surface reports larger increases in [Ca2+]c than the cytosolic sensor, but only when the Ca2+ signals are evoked by IP3R rather than SOCE. Using cells expressing single IP3R subtypes, I demonstrate that each of the three IP3R subtypes can deliver Ca2+ to lysosomes. I conclude that IP3Rs release Ca2+ within near-lysosome microdomains that fuel a low-affinity lysosomal Ca2+ uptake system. The temporal relationship between the increase in pHly and reduced Ca2+ sequestration suggests that pHly affects the organization of the microdomain rather than the Ca2+ uptake mechanism. I show that abrogation of the lysosome H+ gradient does not acutely prevent uptake of Ca2+ into lysosomes, but disrupts junctions with the ER where the exchange of Ca2+ occurs. The dipeptide, glycyl-L-phenylalanine 2-naphthylamide (L-GPN), is much used to disrupt lysosomes and release Ca2+ from them. The mechanism is widely assumed to require cleavage of GPN by cathepsin C, causing accumulation of amino acid residues, and osmotic lysis of lysosomal membranes. I show, using LysoTracker Red and Oregon Green-dextran to report pHly, that L-GPN is effective in HEK cells lacking functional cathepsin C, following CRISPR-Cas9-mediated gene disruption. Furthermore, D-GPN, which is resistant to cleavage by cathepsin C, is as effective as L-GPN at increasing pHly, and it is similarly effective in cells with and without cathepsin C. L-GPN and D-GPN increase cytosolic pH, and the effect is similar when the lysosomal V-ATPase is inhibited with bafilomycin A1. This is not consistent with GPN releasing the acidic contents of lysosomes. I conclude that the effects of GPN on lysosomes are not mediated by cathepsin C. Both L-GPN and D-GPN evoke Ca2+ release, the response is unaffected by inhibition or knock-out of cathepsin C, but it requires Ca2+ within the ER. GPN-evoked increases in [Ca2+]c require Ca2+ within the ER, but they are not mediated by ER Ca2+ channels amplifying Ca2+ release from lysosomes. GPN increases [Ca2+]c by increasing pHcyt, which then directly stimulates Ca2+ release from the ER. I conclude that physiologically relevant increases in pHcyt stimulate Ca2+ release from the ER independent of IP3 and ryanodine receptors, and that GPN does not selectively target lysosomes. I conclude that all three IP3R subtypes selectively deliver Ca2+ to lysosomes, and that the low pH within lysosomes is required to maintain the junctions between ER and lysosomes, but not for lysosomal Ca2+ uptake. I suggest that GPN lacks the specificity required to allow selective release of Ca2+ from lysosomes.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:763790
Date January 2019
CreatorsAtakpa, Peace
ContributorsTaylor, Colin
PublisherUniversity of Cambridge
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.repository.cam.ac.uk/handle/1810/288002

Page generated in 0.0023 seconds