Return to search

Use Of An Activated Magnesium/cosolvent System For The Desorption And Degradation Of Polycyclic Aromatic Hydrocarbons And Their Oxygenated Derivatives In Contaminated Soils

The contamination of soils, with polycyclic aromatic hydrocarbons (PAHs), remains a widespread environmental concern. In the past two decades, many physical, chemical and biological methods have been developed and evaluated for the degradation of PAHs. However, due to their low aqueous solubility, high sorption affinity, hydrophobicity and recalcitrance, the environmental remediation of PAHs in soil continues to be economically challenging. In addition to PAH contamination, the presence of oxygenated derivatives of PAHs (OPAHs), in soils, has increasingly become a concern due to their greater toxic properties compared to parent PAH compounds. To date, no investigations on OPAH-remediation methods have been presented in the literature. The use of zero-valent metals (ZVMs) has been reported for several halogenated contaminants in solution systems, but the effectiveness of ZVM to degrade sorbed PAHs and OPAHs has been rarely addressed. This present research focuses on the development of a combined technique for the feasible desorption and degradation of PAHs and OPAHs in soils. PAH and OPAH degradation efficiency, using activated magnesium (Mg) metal combined with an ethanol-ethyl lactate cosolvent (1:1 ratio), was initially examined in soil-free systems. This metal/cosolvent system demonstrated adequate degradation (above 80%) for high-molecularweight (HMW) PAHs, which were subsequently converted into hydroaromatic compounds; while OPAHs were degraded and converted into hydroxylated or hydrogenated derivatives. Further soil-free studies revealed that the degradation rate was affected by the surface or reactive iv sites of the metal and that optimum degradation efficiency were obtained with Mg ball milled with graphite (Mg/C). In a bench-scale feasibility test, the efficacy of this system was assessed on a soil spiked with a mixture of three HMW PAHs compounds and three OPAHs compounds with amounts ranging from 0.033 mmol to 0.060 mmol. The experimental results show that 2 mL of an ethanol-ethyl lactate solvent mixture resulted in 58% to 85% extraction efficiency for the selected contaminants in 1 g of spiked soil, followed by 64 - 87% degradation efficiency of the extracted contaminants with 4.11 mmol of the activated metal. This activated-Mg/cosolvent system can be considered as a promising alternative method for ex situ remediation of PAH and OPAH-contaminated soils.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-3493
Date01 January 2012
CreatorsElie, Marc
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0154 seconds