Return to search

Consistency of Probabilistic Context-Free Grammars

We present an algorithm for deciding whether an arbitrary proper probabilistic context-free grammar is consistent, i.e., whether the probability that a derivation terminates is one. Our procedure has time complexity $\\\\mathcal O(n^3)$ in the unit-cost model of computation. Moreover, we develop a novel characterization of consistent probabilistic context-free grammars. A simple corollary of our result is that training methods for probabilistic context-free grammars that are based on maximum-likelihood estimation always yield consistent grammars.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25992
Date10 May 2012
CreatorsStüber, Torsten
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:workingPaper, info:eu-repo/semantics/workingPaper, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:14-qucosa-79344, qucosa:24841

Page generated in 0.002 seconds