Return to search

Analyse non linéaire de la stabilité de l'écoulement de Poiseuille plan d'un fluide rhéofluidifiant / Nonlinear stability analysis of shear-thinning plan Poiseuille flow.

L'objectif de cette thèse est d'analyser l'influence des non linéarités, du comportement rhéologique des fluides rhéofluidifiants, sur les conditions de stabilité et de transition vers la turbulence. Dans un premier temps, une analyse linéaire de stabilité avec une approche modale a été réalisée. Les résultats obtenus mettent clairement en évidence l'effet stabilisant de la rhéofluidification. Ensuite, une analyse faiblement non linéaire de stabilité a été menée en vue d'examiner l'influence de la perturbation de la viscosité sur la stabilité vis à vis de perturbations d'amplitude finie. L'analyse de la contribution des termes non linéaires d'inertie et visqueux montre que, contrairement aux termes d'inertie, les termes non linéaires visqueux ont tendance à accélérer l'écoulement et favoriser une bifurcation sur-critique. Les effets rhéofluidifiants tendent à réduire la dissipation visqueuse. Finalement, une analyse fortement non linéaire de stabilité a été conduite en utilisant les techniques de suivi de branches de solutions par des méthodes de continuation. Pour pouvoir traiter les termes visqueux fortement non linéaires, un code de calcul pseudo-spectral a été développé. Des solutions non linéaires d'équilibre ont été obtenues et caractérisées pour différentes valeurs des paramètres rhéologiques / The aim of this study is to understand the influence of the nonlinear rheological behaviour of the shear-thinning fluids on the flow stability and transition to turbulence. First, a linear stability analysis using modal approach was carried out. Results clearly highlight the stabilizing effect of shear-thinning. Then, as a first approach to take into account nonlinear effects of viscosity perturbation on the flow stability, a weakly nonlinear stability analysis is performed in the neighbourhood of the critical conditions. Results indicate that shear-thinning reduces the viscous dissipation and, in contrast to inertial terms, the nonlinear viscous terms tend to accelerate the flow and act in favour of supercritical bifurcation. Finally, a nonlinear stability analysis is done by following solution branches in the parameter space using continuation techniques. To deal with highly nonlinear viscous terms, a pseudo-spectral code is developed. Nonlinear equilibrium solutions was found and characterized for various values of the rheological parameters

Identiferoai:union.ndltd.org:theses.fr/2014LORR0022
Date18 March 2014
CreatorsChekila, Abdelfateh
ContributorsUniversité de Lorraine, Université des Sciences et de la Technologie d'Oran. Mohamed Boudiaf (Algérie), Nouar, Chérif, Nemdili, Ali
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.006 seconds