Return to search

Continuous Approximations of Discrete Phylogenetic Migration Models

Phylogenetics explores the evolutionary relationships among species and one of the main approaches is to construct phylogenetic trees through inference-based methods. Beyond the evolutionary insights these trees provide, the underlying tree structure can also be used to study geographical migration of species. These geographical models, reminiscent of models of DNA sequence evolution, have predominantly been discrete in their nature. However, this poses a multitude of challenges, especially with high-dimensional state-spaces. Previous work has explored the possibility of using continuous diffusion models for geographical migration, however these were not aiming to model non-local migration and large state-spaces. This paper presents and evaluates a scalable continuous phylogenetic migration model which aims to approximate conventional discrete migration models in the case of local and non-local migration.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-348808
Date January 2024
CreatorsHuss, Simon, Mosetti Björk, Theodor
PublisherKTH, Skolan för teknikvetenskap (SCI)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2024:262

Page generated in 0.0054 seconds