Orientador: Djairo Guedes de Figueiredo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-23T01:00:58Z (GMT). No. of bitstreams: 1
Rodrigues_HelderCandido_D.pdf: 2229775 bytes, checksum: 84839eafbd65d5b0be318a939d42c70d (MD5)
Previous issue date: 1997 / Resumo: Neste trabalho, estudamos a equação - ?u + ?u = up em ?, em que 1 ? p ? n+2/n-2, ? é um domínio aberto em Rn, com n?3. Damos atenção especial ao problema com condição de Neumann na fronteira em domínios lipschitzianos no caso crítico, ou seja, p = n+2/n-2. O resultado principal diz respeito à existência de soluções fracas em domínios que satisfazem determinadas condições bastante gerais. Em particular, resolvemos o problema de Neumann na semibola. Na segunda parte do trabalho, estudamos domínios simétricos e encontramos soluções positivas que preservam a simetria do domínio. Também analisamos quando as soluções minimizantes preservam parte da simetria do domínio / Abstract: In this work, we study the equation - ?u + ?u = up in the ?, where 1 ? p? n+2/n-2, ? is an open domain in Rn, with n?3. We give special attention to the critical problem, that is, p = n+2/n-2, with Neumann boundary condition in Lipschtzian domains. The main result is on the existence of weak solutions in domains that satisfy some fairly general conditions. In particular, we solve the problem in a semiball. In the second part of the work, we study symmetric domains and find positive solutions that preserve the symmetry of the domain. We investigate, also, if the minimizing solutions preserve some of the symmetry of the domain / Doutorado / Doutor em Matemática
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306961 |
Date | 06 November 1997 |
Creators | Rodrigues, Helder Candido |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Figueiredo, Djairo Guedes de, 1934-, Ruf, Bernhard Heinrich, Gonçalves, Jose Valdo de Abreu, Lopes, Orlando Francisco, Mercuri, Francesco |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 84 f., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds