Although prostaglandins (PG) and oxytocin are crucial mediators of uterine contractility, their receptor-mediated effects during the menstrual cycle, pregnancy and labour are not fully understood. The aim of this thesis was to elucidate the functional expression of EP, FP, TP and oxytocin receptors in isolated human myometrium relative to myocyte mRNA and signal transduction pathways. Myometrial samples were obtained from consenting non-pregnant and pregnant donors. Functional techniques were used to determine isometric muscle contractions. Primary uterine myocytes and fibroblasts were cultured at term to identify stimulated changes in calcium (Ca2+), cyclic adenosine monophosphate (cAMP) and mRNA. Myometrial strips exhibited spontaneous contractions, which were most active midcycle under oestrogenic conditions. At this time intrinsic contractility and responsiveness to uterotonins decreased towards the fundus. PGE2 produced bellshaped responses with predominant utero-relaxant effects mediated via the EP2 subtype. Although activity was partially restored by PGE2 through EP3/1 receptors, tissue excitation was more pronounced at FP, TP and oxytocin receptors. Despite high FP mRNA expression, the lower segment uterus was particularly responsive to U46619 and oxytocin at term pregnancy. Even so, Ca2+ mobilisation by oxytocin was greater via principal release from intracellular stores. Incubations with atosiban, progesterone and a rho-kinase inhibitor reduced oxytocin-stimulated Ca2+ transients. EP2 also attenuated oxytocic effects but this appeared to be mediated through cAMP rather than Ca2+ signalling pathways. With advancing labour, intrinsic myogenic activity declined in parallel with oxytocin desensitisation. However, TP-induced contractions were continued in the lower parturient uterus. These findings demonstrate that PG and oxytocin receptor expression are regulated in a hormone-dependent temporal and spatial manner. EP2-mediated cAMP formation appears to promote uterine quiescence, whilst TP receptors may control muscle tonus during parturition. These receptors and their messenger systems represent effective tocolytic targets for uterine hypercontractile disorders, such as dysmenorrhoea and preterm labour.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:554001 |
Date | January 2010 |
Creators | Fischer, Deborah Peninnah |
Contributors | Marshall, Kay |
Publisher | University of Bradford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10454/4470 |
Page generated in 0.002 seconds