Return to search

Quantification of Blood Flow Using Ultrasound Contrast Agents

Contrast enhanced ultrasound offers a unique method to measure the blood flow, perfusion, vascular volume and morphology of microvascular networks. This is achieved by exploiting the ability of microbubble contrast agents to be disrupted and preferentially detected with contrast specific imaging techniques – using a method known as disruption-replenishment. In its current form, disruption-replenishment suffers from poor reproducibility and accuracy, largely due to the inappropriate application of a mono-exponential model of microbubble replenishment, and an incomplete understanding of the dependencies of the measurement.

In this thesis, we hypothesize that disruption-replenishment measurements can be improved by applying a perfusion model that considers the physical elements of the measurement, including the haemodynamics and morphology of the vascular system, the ultrasound field distribution and microbubble properties. We present a flexible, theoretical framework to model microbubble replenishment within the microvasculature. The replenishment model is further developed by in vitro and in vivo validation, and clinical translation in a trial of anti-angiogenic therapy in patients, resulting in a proposed clinical protocol.

The presented formalism was shown to be more robust and demonstrated better agreement of both fitting quality and estimates of flow velocity when compared to the established model (accuracy to within 3-9%). The reproducibility of repeated in vivo disruption-replenishment flow measurements was 11.9% using the proposed perfusion model compared to 24% using the established model. Variability of clinical perfusion measurements was also reduced with a method that discards the contribution of flow from larger arteries. Excluding the large vessel component in clinical measurements of tumour blood volume decreased the inter-plane variability by up to 20%. The proposed perfusion model can be used to generate parametric maps of vascularity through which additional quantitative parameters become available. These improvements will help translate the method of disruption-replenishment into routine clinical practice and clinical trials.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/29752
Date31 August 2011
CreatorsHudson, John Monte
ContributorsBurns, Peter N.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds