Background: Dynamic contrast-enhanced MRI (DCE-MRI) has the potential to produce images of physiological quantities such as blood flow, blood vessel volume fraction, and blood vessel permeability. Such information is highly valuable, e.g., in oncology. The focus of this work was to improve the quantitative aspects of DCE-MRI in terms of better understanding of error sources and their effect on estimated physiological quantities. Methods: Firstly, a novel parameter estimation algorithm was developed to overcome a problem with sensitivity to the initial guess in parameter estimation with a specific pharmacokinetic model. Secondly, the accuracy of the arterial input function (AIF), i.e., the estimated arterial blood contrast agent concentration, was evaluated in a phantom environment for a standard magnitude-based AIF method commonly used in vivo. The accuracy was also evaluated in vivo for a phase-based method that has previously shown very promising results in phantoms and in animal studies. Finally, a method was developed for estimation of uncertainties in the estimated physiological quantities. Results: The new parameter estimation algorithm enabled significantly faster parameter estimation, thus making it more feasible to obtain blood flow and permeability maps from a DCE-MRI study. The evaluation of the AIF measurements revealed that inflow effects and non-ideal radiofrequency spoiling seriously degrade magnitude-based AIFs and that proper slice placement and improved signal models can reduce this effect. It was also shown that phase-based AIFs can be a feasible alternative provided that the observed difficulties in quantifying low concentrations can be resolved. The uncertainty estimation method was able to accurately quantify how a variety of different errors propagate to uncertainty in the estimated physiological quantities. Conclusion: This work contributes to a better understanding of parameter estimation and AIF quantification in DCE-MRI. The proposed uncertainty estimation method can be used to efficiently calculate uncertainties in the parametric maps obtained in DCE-MRI.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-49773 |
Date | January 2011 |
Creators | Garpebring, Anders |
Publisher | Umeå universitet, Radiofysik, Umeå : Umeå Universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Umeå University medical dissertations, 0346-6612 ; 1457 |
Page generated in 0.002 seconds