Return to search

Développement mécatronique et contrôle de l'exosquelette des membres inférieurs SOL0.1 / Mechatronic Development and Control of Lower Limb Exoskeleton SOL0.1

Le sujet de thèse concerne le développement de l'architecture de contrôle et la génération de trajectoire pour un exosquelette évolutif appelé SOL. Les résultats de l'étude biomédicale ont révélé que la progressivité de la maladie pouvait être résolue par une réadaptation précoce et continue tout au long de la croissance. Ainsi, l'importance de l'utilisation d'un exosquelette a un impact positif puisqu'il sert à la fois à la locomotion et à la réhabilitation. Cependant, les exosquelettes actuels ne peuvent pas être adaptés au changement continu de la biomécanique de l'adolescent tout au long de sa croissance. Par conséquent, le besoin de développer un exosquelette évolutif capable de faire face aux besoins croissants est un sujet interdisciplinaire. L'architecture de contrôle d'un tel dispositif évolutif a été abordée dans cette thèse, à la fois dans les développements matériels et logiciels pour incorporer autant que possible la fonctionnalité d'évolutivité. Les étapes initiales ont été franchies en vue d'atteindre l'objectif d'un exosquelette évolutif, en contribuant à la fois aux développements matériels qui permettent d'apporter d'autres améliorations tout au long de l'avancement du projet, et aux développements du firmware, qui ont répondu aux besoins en matière d'évolutivité au niveau du contrôle.L'extensibilité a également été abordée aux trois niveaux hiérarchiques de contrôle. Plus spécifiquement, une attention particulière a été accordée à la génération des trajectoires de référence de la marche pour une population en croissance. Enfin, grâce à la connaissance de la biomécanique du sujet, le contrôleur développé est capable d’identifier les trajectoires appropriées et injecter les trajectoires de référence des actionneurs de l’exosquelette SOL.Un premier prototype de l'exosquelette est utilisé pour manifester les résultats du générateur de marche évolutionnaire (E.G.G.) proposé. Comme premier prototype, un mouvement de marche libre dans l'air est testé, où la validation du matériel proposé et des boucles de contrôle sont démontrées. L'étude des réponses de contrôle des exosquelettes contre les perturbations externes probables et des scénarios de sécurité en cas de défaillance est encore un travail futur obligatoire avant de réaliser les premiers tests sur l'exosquelette humain. / The thesis' subject concerns the development of the control architecture and the trajectory generation for a scalable exoskeleton called SOL. The biomedical study outcomes revealed that the progressiveness of the disease could be solved by early and continuous rehabilitation throughout the growth. Thus, the importance of using an exoskeleton has a positive impact since it is used to provide locomotion and rehabilitation, at the same time. However, the current exoskeletons cannot be adapted to fit the continuous change of teenager biomechanics throughout his growth. Hence, the need for developing a scalable exoskeleton that can cope with the growing needs is still a challenging topic. Especially, the control architecture of such a scalable device was tackled in this thesis, in both hardware and software developments to incorporate the scalability features. Initiative steps have been passed towards the goal of achieving a scalable exoskeleton, by contributing in hardware developments that allowing further enhancements to be included throughout the advancement of the project. Firmware developments achieved have addressed the scalability needs in terms of control by considering the three hierarchical levels (which are: High, Middle, and low-levels of control). More specifically, a focus was dedicated to the generation of the gait reference trajectories for the growing population. Data were collected from healthy subjects wearing a passive exoskeleton to extract the proper joint trajectories, then, the data were processed to build a gait library to be deployed on the exoskeleton controller. Finally, by knowledge of the subject biomechanics, the controller is able to fetch the proper trajectories and inject the reference trajectories to the SOL's actuators. A first prototype of the exoskeleton is used to manifest the outcomes of the proposed Evolutionary Gait Generator (E.G.G.). As a first prototype, A free walking in air motion is tested, where the validation of the proposed hardware and control loops are demonstrated. Studying the exoskeletons' control responses against probable external disturbances and fail-safe scenarios are still future work mandatory before achieving first human-exoskeleton testing.

Identiferoai:union.ndltd.org:theses.fr/2019SACLV048
Date28 June 2019
CreatorsFouz, Moustafa
ContributorsUniversité Paris-Saclay (ComUE), Ben Ouezdou, Fethi, Alfayad, Samer
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds