[ES] La capacidad de las células madre para proliferar formando distintas células especializadas les otorga la potencialidad de servir de base para terapias efectivas para patologías cuyo tratamiento era inimaginable hasta hace apenas dos décadas. Sin embargo, esta capacidad se encuentra mediada por estímulos fisiológicos, químicos, y eléctricos, específicos y complejos, que dificultan su traslación a la rutina clínica. Por ello, las células madre representan un campo de estudio en el que se invierten amplios esfuerzos por parte de la comunidad científica.
En el ámbito de la regeneración nerviosa, para modular su desarrollo y diferenciación el tratamiento farmacológico, la electroestimulación, y la estimulación optogenética son técnicas que están consiguiendo prometedores resultados. Es por ello por lo que en la presente tesis se ha desarrollado un conjunto de sistemas electrónicos para permitir la aplicación combinada de estas técnicas in vitro, con perspectiva a su aplicación in vivo.
Hemos diseñado una novedosa tecnología para la liberación eléctricamente controlada de fármacos. Esta tecnología está basada en nanopartículas de sílice mesoporosa y puertas moleculares de bipiridina-heparina. Las puertas moleculares son electroquímicamente reactivas, y encierran los fármacos en el interior de las nanopartículas, liberándolos ante un estímulo eléctrico. Hemos caracterizado esta tecnología, y la hemos validado mediante la liberación controlada de rodamina en cultivos celulares de HeLa. Para la combinación de liberación controlada de fármacos y electroestimulación hemos desarrollado dispositivos que permiten aplicar los estímulos eléctricos de forma configurable desde una interfaz gráfica de usuario. Además, hemos diseñado un módulo de expansión que permite multiplexar las señales eléctricas a diferentes cultivos celulares.
Además, hemos diseñado un dispositivo de estimulación optogenética. Este tipo de estimulación consiste en la modificación genética de las células para que sean sensibles a la radiación lumínica de determinada longitud de onda. En el ámbito de la regeneración de tejido mediante células precursoras neurales, es de interés poder inducir ondas de calcio, favoreciendo su diferenciación en neuronas y la formación de circuitos sinápticos. El dispositivo diseñado permite obtener imágenes en tiempo real mediante microscopía confocal de las respuestas transitorias de las células al ser irradiadas. El dispositivo se ha validado irradiando neuronas modificadas con luz pulsada de 100 ms. También hemos diseñado un dispositivo electrónico complementario de medida de irradiancia con el doble fin de permitir la calibración del equipo de irradiancia y medir la irradiancia en tiempo real durante los experimentos in vitro.
Los resultados del uso de los bioactuadores en procesos complejos y dinámicos, como la regeneración de tejido nervioso, son limitados en lazo abierto. Uno de los principales aspectos analizados es el desarrollo de biosensores que permitiesen la cuantización de ciertas biomoléculas para ajustar la estimulación suministrada en tiempo real. Por ejemplo, la segregación de serotonina es una respuesta identificada en la elongación de células precursoras neurales, pero hay otras biomoléculas de interés para la implementación de un control en lazo cerrado. Entre las tecnologías en el estado del arte, los biosensores basados en transistores de efecto de campo (FET) funcionalizados con aptámeros son realmente prometedores para esta aplicación. Sin embargo, esta tecnología no permitía la medición simultánea de más de una biomolécula objetivo en un volumen reducido debido a las interferencias entre los distintos FETs, cuyos terminales se encuentran inmersos en la solución. Por ello, hemos desarrollado instrumentación electrónica capaz de medir simultáneamente varios de estos biosensores, y la hemos validado mediante la medición simultánea de pH y la detección preliminar de serotonina y glutamato. / [CA] La capacitat de les cèl·lules mare per a proliferar formant diferents cèl·lules especialitzades els atorga la potencialitat de servir de base per a teràpies efectives per a patologies el tractament de les quals era inimaginable fins fa a penes dues dècades. No obstant això, aquesta capacitat es troba mediada per estímuls fisiològics, químics, i elèctrics, específics i complexos, que dificulten la seua translació a la rutina clínica. Per això, les cèl·lules mare representen un camp d'estudi en el qual s'inverteixen amplis esforços per part de la comunitat científica.
En l'àmbit de la regeneració nerviosa, per a modular el seu desenvolupament i diferenciació el tractament farmacològic, l'electroestimulació, i l'estimulació optogenética són tècniques que estan aconseguint prometedors resultats. És per això que en la present tesi s'ha desenvolupat un conjunt de sistemes electrònics per a permetre l'aplicació combinada d'aquestes tècniques in vitro, amb perspectiva a la seua aplicació in vivo.
Hem dissenyat una nova tecnologia per a l'alliberament elèctricament controlat de fàrmacs. Aquesta tecnologia està basada en nanopartícules de sílice mesoporosa i portes moleculars de bipiridina-heparina. Les portes moleculars són electroquímicament reactives, i tanquen els fàrmacs a l'interior de les nanopartícules, alliberant-los davant un estímul elèctric. Hem caracteritzat aquesta tecnologia, i l'hem validada mitjançant l'alliberament controlat de rodamina en cultius cel·lulars de HeLa. Per a la combinació d'alliberament controlat de fàrmacs i electroestimulació hem desenvolupat dispositius que permeten aplicar els estímuls elèctrics de manera configurable des d'una interfície gràfica d'usuari. A més, hem dissenyat un mòdul d'expansió que permet multiplexar els senyals elèctrics a diferents cultius cel·lulars.
A més, hem dissenyat un dispositiu d'estimulació optogenètica. Aquest tipus d'estimulació consisteix en la modificació genètica de les cèl·lules perquè siguen sensibles a la radiació lumínica de determinada longitud d'ona. En l'àmbit de la regeneració de teixit mitjançant cèl·lules precursores neurals, és d'interés poder induir ones de calci, afavorint la seua diferenciació en neurones i la formació de circuits sinàptics. El dispositiu dissenyat permet obtindré imatges en temps real mitjançant microscòpia confocal de les respostes transitòries de les cèl·lules en ser irradiades. El dispositiu s'ha validat irradiant neurones modificades amb llum polsada de 100 ms. També hem dissenyat un dispositiu electrònic complementari de mesura d'irradiància amb el doble fi de permetre el calibratge de l'equip d'irradiància i mesurar la irradiància en temps real durant els experiments in vitro.
Els resultats de l'ús dels bioactuadors en processos complexos i dinàmics, com la regeneració de teixit nerviós, són limitats en llaç obert. Un dels principals aspectes analitzats és el desenvolupament de biosensors que permeteren la quantització de certes biomolècules per a ajustar l'estimulació subministrada en temps real. Per exemple, la segregació de serotonina és una resposta identificada amb l'elongació de les cèl·lules precursores neurals, però hi ha altres biomolècules d'interés per a la implementació d'un control en llaç tancat. Entre les tecnologies en l'estat de l'art, els biosensors basats en transistors d'efecte de camp (FET) funcionalitzats amb aptàmers són realment prometedors per a aquesta aplicació. No obstant això, aquesta tecnologia no permetia el mesurament simultani de més d'una biomolècula objectiu en un volum reduït a causa de les interferències entre els diferents FETs, els terminals dels quals es troben immersos en la solució. Per això, hem desenvolupat instrumentació electrònica capaç de mesurar simultàniament diversos d'aquests biosensors i els hem validat amb mesurament simultani del pH i la detecció preliminar de serotonina i glutamat. / [EN] The stem cells' ability to proliferate to form different specialized cells gives them the potential to serve as the basis for effective therapies for pathologies whose treatment was unimaginable until just two decades ago. However, this capacity is mediated by specific and complex physiological, chemical, and electrical stimuli that complicate their translation to clinical routine. For this reason, stem cells represent a field of study in which the scientific community is investing a great deal of effort.
In the field of nerve regeneration, to modulate their development and differentiation, pharmacological treatment, electrostimulation, and optogenetic stimulation are techniques that are achieving promising results. For this reason, we have developed a set of electronic systems to allow the combined application of these techniques in vitro, with a view to their application in vivo.
We have designed a novel technology for the electrically controlled release of drugs. This technology is based on mesoporous silica nanoparticles and bipyridine-heparin molecular gates. The molecular gates are electrochemically reactive and entrap the drugs inside the nanoparticles, releasing them upon electrical stimulus. We have characterized this technology and validated it by controlled release of rhodamine in HeLa cell cultures. For combining electrostimulation and controlled drug release we have developed devices that allow applying the different electrical stimuli in a configurable way from a graphical user interface. In addition, we have designed an expansion module that allows multiplexing electrical signals to different cell cultures.
In addition, we have designed an optogenetic stimulation device. This type of stimulation consists of genetically modifying cells to make them sensitive to light radiation of a specific wavelength. In tissue regeneration using neural precursor cells, it is interesting to be able to induce calcium waves, favoring the cell differentiation into neurons and the formation of synaptic circuits. The designed device enable the obtention of real-time images through confocal microscopy of the transient responses of cells upon irradiation. The device has been validated by irradiating modified neurons with 100 ms pulsed light stimulation. We have also designed a complementary electronic irradiance measurement device to allow calibration of the irradiator equipment and measuring irradiance in real time during in vitro experiments.
The results of using bioactuators in complex and dynamic processes, such as nerve tissue regeneration, are limited in an open loop. One of the main aspects analyzed is the development of biosensors that would allow quantifying of specific biomolecules to adjust the stimulation provided in real time. For instance, serotonin secretion is an identified response of neural precursor cells elongation, among other biomolecules of interest for the implementation of a closed-loop control. Among the state-of-the-art technologies, biosensors based on field effect transistors (FETs) functionalized with aptamers are promising for this application. However, this technology did not allow the simultaneous measurement of more than one target biomolecule in a small volume due to interferences between the different FETs, whose terminals are immersed in the solution. This is why we have developed electronic instrumentation capable of simultaneously measuring several of these biosensors, and we have validated it with the simultaneous pH measurement and the preliminary detection of serotonin and glutamate. / Monreal Trigo, J. (2023). Electronic Devices for the Combination of Electrically Controlled Drug Release, Electrostimulation, and Optogenetic Stimulation for Nerve Tissue Regeneration [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/193841
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/193841 |
Date | 02 June 2023 |
Creators | Monreal Trigo, Javier |
Contributors | Alcañiz Fillol, Miguel, Martínez Mañez, Ramón, Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.0038 seconds