Return to search

Hypervisor-based cloud anomaly detection using supervised learning techniques

Although cloud network flows are similar to conventional network flows in many ways, there are some major differences in their statistical characteristics. However, due to the lack of adequate public datasets, the proponents of many existing cloud intrusion detection systems (IDS) have relied on the DARPA dataset which was obtained by simulating a conventional network environment. In the current thesis, we show empirically that the DARPA dataset by failing to meet important statistical characteristics of real-world cloud traffic data centers is inadequate for evaluating cloud IDS. We analyze, as an alternative, a new public dataset collected through cooperation between our lab and a non-profit cloud service provider, which contains benign data and a wide variety of attack data. Furthermore, we present a new hypervisor-based cloud IDS using an instance-oriented feature model and supervised machine learning techniques. We investigate 3 different classifiers: Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) algorithms. Experimental evaluation on a diversified dataset yields a detection rate of 92.08% and a false-positive rate of 1.49% for the random forest, the best performing of the three classifiers. / Graduate

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/11503
Date23 January 2020
CreatorsNwamuo, Onyekachi
ContributorsTraore, Issa
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAvailable to the World Wide Web

Page generated in 0.0018 seconds