Return to search

Boundary Layers in Periodic Homogenization

The boundary layer problems in periodic homogenization arise naturally from the quantitative analysis of convergence rates. Formally they are second-order linear elliptic systems with periodically oscillating coefficient matrix, subject to periodically oscillating Dirichelt or Neumann boundary data. In this dissertation, for either Dirichlet problem or Neumann problem, we establish the homogenization results and obtain the nearly sharp convergence rates, provided the domain is strictly convex. Also, we show that the homogenized boundary data is in W1,p for any p ∈ (1,∞), which implies the Cα-Hölder continuity for any α ∈ (0,1).

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:math_etds-1065
Date01 January 2019
CreatorsZhuge, Jinping
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Mathematics

Page generated in 0.0061 seconds