This thesis deals with the issue of automatic measurement of the duration of QRS complexes in ECG signals. Special emphasis is then placed on the possibility of automatic detection of QRS complexes while exciting cardiac tissue with a pacemaker. The content of this work is divided into four logical units, where the first part deals with the heart as an organ. It describes the origin and spread of excitement in the heart, its possible pathologies and their manifestations in ECG recording, it also deals with pacing and measuring ECG recording during simultaneous pacing. The second part of the thesis contains a brief introduction to the topic of machine and deep learning. The third part of the thesis contains a search of current approaches using methods based on deep learning to solve the detection of QRSd. The fourth part deals with the design and implementation of its own model of deep learning, able to detect the beginnings and ends of QRS complexes from ECG recordings. It describes the data preprocessing implemented in the MATLAB programming environment. The actual implementation of the model was performed in the Python using the PyTorch and NumPy moduls.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:449407 |
Date | January 2021 |
Creators | Malina, Ondřej |
Contributors | Ronzhina, Marina, Smíšek, Radovan |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0057 seconds