This thesis deals with the field of recommendation systems using deep neural networks and their use in book recommendation. There are the main traditional recommender systems analysed and their representations are summarized, as well as systems with more advanced techniques based on machine learning. The core of the thesis is to use convolutional neural networks for natural language processing and create a hybrid book recommendation system. Suggested system includes matrix factorization and make recommendation based on user ratings and book metadata, including texts descriptions. I designed two models, one with bag-of-words technique and one with convolutional neural network. Both of them defeat baseline methods. On the created data set, that was created from the Goodreads, model with CNN beats model with BOW.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:385949 |
Date | January 2018 |
Creators | Gráca, Martin |
Contributors | Kolář, Martin, Hradiš, Michal |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds