Return to search

Translation invariant Banach spaces of distributions and boundary values of integral transform / Translaciono invarijantni Banahovi prostori distribucija i granične vrednosti preko integralne transformacije

<p>We use common notation &lowast; for distribution (Scshwartz), (M<sub>p</sub>) (Beurling) i {M<sub>p</sub>} (Roumieu) setting. We introduce and study new (ultra) distribution spaces, the test function spaces&nbsp;<em>D<sup>&lowast;</sup><sub>E</sub></em>&nbsp; and their strong duals <em>D<sup><span style="font-size: 10px;">&#39;</span>&lowast;</sup><sub>E&rsquo;*</sub></em>.These spaces generalize the spaces <em>D<sup>&lowast;</sup><sub>L<sup>q</sup></sub> , D&#39;<sup>&lowast;</sup><sub>L<sup>p</sup></sub> , B&rsquo;*</em>&nbsp;and their weighted versions. The construction of our new (ultra)distribution &nbsp;spaces is based on the analysis of a suitable translation-invariant Banach space of (ultra)distribution <em>E</em>&nbsp;with continuous translation group, which turns out to be a convolution module over the Beurling algebra&nbsp;<em>L<sup>1</sup><sub>&omega;</sub></em>, where the weight &nbsp;&omega; is related to the translation operators on <em>E</em>.&nbsp;The&nbsp;Banach space&nbsp;<em>E</em><sup>&rsquo;</sup><sub>&lowast;</sub>&nbsp;stands for&nbsp;<em>L<sup>1</sup><sub>&omega;ˇ</sub> &lowast; E</em>&rsquo;.&nbsp;We apply our results to the study of the&nbsp;convolution of ultradistributions. The spaces of convolutors&nbsp;<em>O<span style="font-size: 12px;">&rsquo;<sup>&lowast;</sup></span><span style="font-size: 8.33333px;">C</span></em><span style="font-size: 12px;"><em>&nbsp;(</em><strong>R</strong><em><sup>n</sup>)</em>&nbsp;</span>for tempered&nbsp;ultradistributions are analyzed via the duality with respect to the test function<br />spaces<span style="font-size: 12px;">&nbsp;<em>O<sup>&lowast;</sup><sub>C</sub> (</em><strong>R</strong><em><sup>n</sup>)</em>,&nbsp;</span>introduced in this thesis. Using the properties of translationinvariant<br />Banach space of ultradistributions <em>E</em> we obtain a full characterization of<br />the general convolution of Roumieu ultradistributions via the space of integrable<br />ultradistributions is obtained. We show: The convolution of two Roumieu ultradistributions&nbsp;<span style="font-size: 12px;"><em>T, S &isin; D&rsquo;<sup>{Mp}</sup> (</em><strong>R</strong><em><sup>n</sup>)&nbsp;</em> exists if and only if&nbsp;<em>(</em></span><em>&phi;</em><span style="font-size: 12px;"><em>&nbsp;&lowast; &Scaron;) T &isin; D<sup>&rsquo;{Mp}</sup><sub>L<sup>1</sup></sub>(</em><strong>R</strong><em><sup>n</sup>)</em>&nbsp; for every </span><em>&phi;</em><span style="font-size: 12px;"><em>&nbsp;&isin; D <sup>{Mp}</sup> (</em><strong>R</strong><em><sup>n</sup>)</em>.&nbsp;</span>We study boundary values of holomorphic functions defined in tube domains. New edge of the wedge theorems are obtained. The results<br />are then applied to represent<span style="font-size: 12px;">&nbsp;<em>D&rsquo;<sub>E&rsquo;*</sub></em></span><span style="font-size: 12px;">&nbsp;&nbsp;</span>as a quotient space of holomorphic functions.<br />We also give representations of elements of<span style="font-size: 12px;">&nbsp;<em>D&rsquo;<sub>E&rsquo;*</sub></em></span><span style="font-size: 12px;">&nbsp;&nbsp;</span>via the heat kernel method.</p> / <p>Koristimo oznaku &lowast; za distribuciono (Svarcovo), (Mp) (Berlingovo) i&nbsp;{Mp} (Roumieuovo) okruženje. Uvodimo i prouavamo nove (ultra)distribucione&nbsp;prostore, &nbsp;test funkcijske prostore <em>D</em><sup>&lowast;</sup><sub>E</sub> i njihove duale <em>D<sup>&#39;</sup></em><sup>&lowast;</sup><sub><em>E&#39;*</em></sub>.&nbsp;&nbsp;Ovi prostori uop&scaron;tavaju&nbsp;<br />prostore <em>D</em><sup>&lowast;</sup><sub>Lq</sub> , <em>D</em><sup>&#39;&lowast;</sup><sub>Lp</sub> , <em>B<sup>&#39;</sup></em><sup>&lowast;</sup> i njihove težinske verzije. Konstrukcija na&scaron;ih novih&nbsp;<br />(ultra)distribucionih prostora je zasnovana na analizi odgovarajuićh translaciono&nbsp;<br />- invarijantnih Banahovih prostora (ultra)distribucija koje označavamo sa&nbsp;<em>E</em>. Ovi prostori imaju neprekidnu grupu translacija, koja je konvolucioni modul&nbsp;nad &nbsp;Beurlingovom algebrom L<sup>1</sup><sub>&omega;</sub>, gde je težina &omega; povezana sa operatorima translacije&nbsp;<br />prostora <em>E</em>. Banahov prostor <em>E<sup>&#39;</sup></em><sub>&lowast;&nbsp;</sub>označava prostor <em>L</em><sup>1</sup><sub>&omega;˅</sub> &lowast; <em>E<sup>&#39;</sup></em>. Koristeći dobijene&nbsp;<br />rezultata proučavamo konvoluciju ultradistribucija. Prostori konvolutora &nbsp;<em>O<sup>&#39;</sup></em><sup>&lowast;</sup><sub><em>C&nbsp;</em></sub>(<strong>R</strong><sup>n</sup>)&nbsp;temperiranih ultradistribucija, analizirani su pomoću dualnosti&nbsp;<br />test funkcijskih prostora <em>O</em><sup>&lowast;</sup><sub><em>C</em></sub> (<strong>R</strong><sup>n</sup>), definisanih u ovoj tezi. Koristeći svojstva&nbsp;<br />translaciono - invarijantnih Banahovih prostora temperiranih ultradistribucija,&nbsp;<br />opet označenih sa <em>E</em>, dobijamo karakterizaciju konvolucije Romuieu-ovih &nbsp;ultradistribucija,&nbsp;preko integrabilnih ultradistribucija. Dokazujemo da: konvolucija&nbsp;<br />dve Roumieu-ove ultradistribucija <em>T</em>, <em>S</em> &isin; <em>D<sup>&#39;</sup></em><sup>{Mp}&nbsp;</sup>(<strong>R</strong><sup>n</sup>) postoji ako i samo ako (&phi; &lowast; <em>S</em>ˇ)<em>T</em> &isin; <em>D<sup>&#39;</sup></em><sup>{Mp}&nbsp;</sup><sub>L<sup>1</sup></sub> (<strong>R</strong><sup>n</sup>) za svaki &phi; &isin; <em>D</em><sup>{Mp}</sup>(<strong>R</strong><sup>n</sup>). Takođe, proučavamo granične vrednosti holomorfnih funkcija definisanih na tubama. Dokazane su nove teoreme &rdquo;otrog klina&rdquo;. Rezultati se zatim koriste za prezentaciju <em>D<sup>&#39;</sup><sub>E<sup>&#39;</sup></sub></em><sub>&lowast;&nbsp;</sub>preko faktor prostora holomorfnih funkcija. Takođe, data je prezentacija elemente <em>D</em><sup>&#39;</sup><sub><em>E<sup>&#39;</sup></em>&lowast;&nbsp;</sub>koristeći heat kernel metode.</p>

Identiferoai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)93767
Date21 April 2015
CreatorsDimovski Pavel
ContributorsPilipović Stevan, Vindas Jasson, Teofanov Nenad, Nedeljkov Marko, Kostić Marko
PublisherUniverzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, University of Novi Sad, Faculty of Sciences at Novi Sad
Source SetsUniversity of Novi Sad
LanguageEnglish
Detected LanguageUnknown
TypePhD thesis

Page generated in 0.0028 seconds