This thesis focuses on a problem of character recognition from real scenes, which has earned significant amount of attention with the development of modern technology. The aim of the paper is to use an algorithm that has state-of-art performance on standard data sets and apply it for the recognition task. The chosen algorithm is a convolution network with deep structure where the application of the specified model has not yet been published. The implemented solution is built on theoretical parts which are provided in comprehensive overview. Two types of neural network are used in the practical part: a multilayer perceptron and the convolution model. But as the complex structure of the convolution networks gives much better performance compare with the classification error of the MLP on the first data set, only the convolution structure is used in the further experiments. The model is validated on two public data sets that correspond with the specification of the task. In order to obtain an optimal solution based on the data structure several tests had been made on the modificated network and with various adjustments on the input data. Presented solution provided comparable prediction rate compare to the best results of the other studies while using artificially generated learning pattern. In conclusion, the thesis describes possible extensions and improvements of the model, which should lead to the decrease of the classification error.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:198610 |
Date | January 2014 |
Creators | Fiala, Petr |
Contributors | Neumann, Lukáš, Berka, Petr |
Publisher | Vysoká škola ekonomická v Praze |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0113 seconds