Atrial fibrillation is an arrhythmia commonly detected from ECG using its specific characteristics. An early detection of this arrhythmia is a key to prevention of more serious conditions. Nowadays, atrial fibrillation detection is being implemented more often using deep learning. This work presents detection of atrial fibrillation from 12lead ECG using deep convolutional network. In the first section, there is a theoretical context of this work, then there is a description of proposed algorithm. Detection is implemented by a program in Python in two variations and their accuracy is rated by Accuracy and F1 measure. Results of the work are being discussed, mutually compared and compared to other similar publications.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413017 |
Date | January 2020 |
Creators | Budíková, Barbora |
Contributors | Ronzhina, Marina, Hejč, Jakub |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds