Background: Traffic Sign Recognition (TSR) is particularly useful for novice driversand self-driving cars. Driver Assistance Systems(DAS) involves automatic trafficsign recognition. Efficient classification of the traffic signs is required in DAS andunmanned vehicles for safe navigation. Convolutional Neural Networks(CNN) isknown for establishing promising results in the field of image classification, whichinspired us to employ this technique in our thesis. Computer vision is a process thatis used to understand the images and retrieve data from them. OpenCV is a Pythonlibrary used to detect traffic sign images in real-time. Objectives: This study deals with an experiment to build a CNN model which canclassify the traffic signs in real-time effectively using OpenCV. The model is builtwith low computational cost. The study also includes an experiment where variouscombinations of parameters are tuned to improve the model’s performance. Methods: The experimentation method involve building a CNN model based onmodified LeNet architecture with four convolutional layers, two max-pooling layersand two dense layers. The model is trained and tested with the German Traffic SignRecognition Benchmark (GTSRB) dataset. Parameter tuning with different combinationsof learning rate and epochs is done to improve the model’s performance.Later this model is used to classify the images introduced to the camera in real-time. Results: The graphs depicting the accuracy and loss of the model before and afterparameter tuning are presented. An experiment is done to classify the traffic signimage introduced to the camera by using the CNN model. High probability scoresare achieved during the process which is presented. Conclusions: The results show that the proposed model achieved 95% model accuracywith an optimum number of epochs, i.e., 30 and default optimum value oflearning rate, i.e., 0.001. High probabilities, i.e., above 75%, were achieved when themodel was tested using new real-time data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-21890 |
Date | January 2021 |
Creators | Kondamari, Pramod Sai, Itha, Anudeep |
Publisher | Blekinge Tekniska Högskola, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds