This thesis presents performance evaluation and a field validation study of a time and temperature indexed autoregressive with exogenous (4-3-5 ARX) building thermal load prediction model with an aim to integrate the model with actual predictive control systems. The 4-3-5 ARX model is very simple and computationally efficient with relatively high prediction accuracy compared to the existing sophisticated prediction models, such as artificial neural network prediction models. However, performance evaluation and field validation of the model are essential steps before implementing the model in actual practice. The performance of the model was evaluated under different climate conditions as well as under modeling uncertainty. A field validation study was carried out for three buildings at Mississippi State University. The results demonstrate that the 4-3-5 ARX model can predict building thermal loads in an accurate manner most of the times, indicating that the model can be readily implemented in predictive control systems.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4499 |
Date | 14 August 2015 |
Creators | Sarwar, Riasat Azim |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0018 seconds