The research conducted in this study focussed on advancing the knowledge database of diamineplatinum complexes on two frontiers: 1) the development of novel anticancer complexes, and 2) improvements in their synthetic chemistry. Novel square-planar dichloro and oxalato platinum(II) complexes were synthesized as potential anticancer agents in accordance with a comprehensive set of factors identified as being significant in optimizing such action. The nonleaving ligands consisted of asymmetric chelating chiral diamines of the form 1- (1-R-imidazol-2yl)(R')methanamine (R representing methyl, butyl and R' methyl, phenyl). The complexes were characterized by a host of spectral, thermal and crystallographic techniques. In addition, the stabilities of the complexes were monitored in aqueous and saline solutions. Cytotoxicity screening on three cultured cancer cell lines (MCF-7, HeLa and HT29) indicated the compounds, present as their respective racemates, to have rather modest activities relative to cisplatin; with complexes having the smallest substituents, R,R' = methyl, being most active. In recognition of the limitations of traditional silver-based syntheses of oxalatoplatinum(II) complexes, innovative non-silver methods were developed using the well known cancer drug, oxaliplatin, (trans-R,R-1,2- diaminocyclohexane)oxalatoplatinum(II), as a prototype. These involved direct ligand exchange reactions of the dichloro precursor, (trans-R,R-1,2- diaminocyclohexane)dichloroplatinum(II), with tetrabutylammonium oxalate in essentially non-aqueous solvents. A 90:10 mixture of isoamyl alcohol (3-methyl- 1-butanol):water, proved to be a promising solvent, enabling the recovery of pure oxaliplatin (~98 percent) after 9 hours at 88 °C in yields of up to 86 percent. In light of the perceived unique mode of anticancer action available to mononitroplatinum(IV) complexes (i.e. their STAT3-binding potential), octahedral diamineoxalatoplatinum(IV) complexes containing axially-coordinated nitro and halo co-ligands were synthesized and extensively characterized. Electrochemical studies revealed trends in reduction potential which could be correlated to structural / chemical traits of the coordinated diamine and axial ligands. The similarities of the determined cytotoxicities of the platinum(IV) compounds and their respective platinum(II) analogues, implicated reduction as a means of activation of the platinum(IV) complexes.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10446 |
Date | January 2009 |
Creators | Jaganath, Yatish |
Publisher | Nelson Mandela Metropolitan University, Faculty of Science |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Doctoral, PhD |
Format | xviii, 222 leaves, pdf |
Rights | Nelson Mandela Metropolitan University |
Page generated in 0.0182 seconds