Return to search

Nanobilles de quantum dots fluorescents pour la détection biomoléculaire / Quantum dot-based nanobeads functionalized for biodetection

Les propriétés des quantum dots (QDs) en font des sondes adaptées à la reconnaissance moléculaire. Leur pic d’émission en fluorescence est très étroit et ajustable, tandis que la section efficace de leur spectre d’absorption est très large. En outre, ils sont très brillants et résistent mieux au photoblanchiment que les colorants organiques conventionnels.Notre objectif a été de concevoir un nouveau type de sondes fluorescentes pour une détection rapide à l’échelle de la molécule unique. L’utilisation d’agrégats contenant plusieurs milliers de QDs, plutôt que celle de QDs individuels, permet d’accroître le signal de fluorescence et de simplifier les modalités de détection. La morphologie et la chimie de surface des premiers agrégats préparés n’ont pas pu être contrôlées en les recouvrant avec des molécules de surfactants courts ou une couche de polymère en solution aqueuse. La stratégie centrale de ce manuscrit a permis d’assembler les QDs en nanobilles (NBs) monodisperses de quelques centaines de nanomètres de diamètre, encapsulées dans une couche de silice Stöber. Leur stabilité colloïdale et leur photostabilité ont ainsi été conservées. Un nouveau type d’hybride polymère-silane a été greffé sur la silice. Il présente des chaînes zwittérioniques, garantissant la solubilité en milieu aqueux et une adsorption non spécifique minimale, ainsi que des fonctions réactives pour la bioconjugaison. La réactivité de NBs fonctionnalisées par de la streptavidine avec des billes commerciales biotinylées a été démontrée. Nos résultats préliminaires ont également montré que les NBs peuvent être intégrées dans un dispositif microfluidique pour être comptées individuellement. / Using nanotechnology for molecular diagnostics holds many advantages e.g. an improvement in the simplicity and the sensitivity of analysis. Semi-conductor nanocrystals or quantum dots (QDs) demonstrate several unique properties that make them suitable probes for biomolecular recognition. These QDs present narrow size-tunable emission spectra and a broad excitation spectrum; in addition, they offer higher photostability and brightness than conventional organic dyes. Our aim was to design a new diagnostic probe based on fluorescent nanobeads containing QDs, envi-sioned as a tool for fast and single-molecule detection. An even brighter fluorescence and easily detectable analytical signals could indeed be achieved by aggregating several thousand of QDs together, as compared to single QDs. Coating QD clusters with small surfactants or a polymer layer didn’t provide morphological control or a suitable surface chemistry for bioconjugation. The strategy that we developed consists in self-assembling QDs into monodisperse nanobeads of a few hundreds of nanometers in diameter, on top of which a silica shell was grown by a Stöber-inspired process. This allowed us to protect their colloidal and photo-stability. A new type of multidentate polymer-silane hybrid was subsequently grafted onto the silica shell, presenting a zwitterionic chain for water solubility and antifouling, as well as reactive functions for conjugation with biomolecules. We succeeded in reacting streptavidin-conjugated nanobeads with commercial biotinylated beads. Preliminary results have also shown that we can integrate the nanobeads into a microfluidic system for an efficient single-particle counting.

Identiferoai:union.ndltd.org:theses.fr/2017PA066362
Date06 October 2017
CreatorsDembele, Fatimata
ContributorsParis 6, Pons, Thomas, Lequeux, Nicolas
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds