Dans cette thèse, nous avons étudié quelques aspects fondamentaux de la gravitation quantique à boucles (Loop Quantum Gravity ou LQG). Tout d'abord, nous avons discuté le choix de la représentation polymère dans ce programme de quantification de la relativité générale. Pour cela, nous avons considéré la corde bosonique comme modèle-jouet sur lequel on peut tester les méthodes de quantification de la LQG. Dans cette optique, nous avons introduit et étudié une formulation originale de la corde bosonique, dite corde algébrique. Ensuite, nous nous sommes intéressé au problème important du choix de la jauge temporelle en LQG. Ce choix permet de passer d'un groupe de jauge non-compact (le groupe de Lorentz) à un groupe de jauge compact (le groupe des rotations) et ainsi d'obtenir un spectre discret des opérateurs de géométrie. Nous avons montré qu'il est possible de ne pas faire le choix de la jauge temporelle, de pouvoir quantifier malgré tout la théorie et de retrouver un spectre discret des opérateurs de géométrie même avec un groupe de jauge non-compact. Enfin, nous nous sommes attaché à comprendre le lien entre les approches canonique et covariante afin de tester la validité du nouveau modèle de mousse de spins introduit par Engle, Peireira, Rovelli et Livine (EPRL). / No summary available
Identifer | oai:union.ndltd.org:theses.fr/2011TOUR4050 |
Date | 12 December 2011 |
Creators | Sardelli, Francesco |
Contributors | Tours, Noui, Karim |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds