Return to search

Experimental studies on electrical and lift-force models of the ionic flyer with wire-plate electrode configuration.

Chung, Chor Fung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 95-97). / Abstracts in English and Chinese. / Acknowledgements --- p.iv / Table of Contents --- p.v / List of Figures --- p.viii / List of Tables --- p.xiii / Nomenclature --- p.xiv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Development of Micro Indoor Surveillance Flyers --- p.1 / Chapter 1.1.1 --- Overview --- p.1 / Chapter 1.1.2 --- Intrinsic Problem of Surveillance Helicopters --- p.2 / Chapter 1.2 --- Proposed Non-moving Parts and Noiseless Flyers --- p.2 / Chapter 1.3 --- Organization of the remaining dissertation --- p.5 / Chapter Chapter 2 --- The Basic Structure of the Ionic Flyers --- p.7 / Chapter 2.1 --- The Components and the Structural Parameters of the Ionic Flyers --- p.7 / Chapter 2.2 --- Proposed Operational Principles --- p.8 / Chapter 2.2.1 --- The Electrohydrodynamic Effect --- p.9 / Chapter 2.2.2 --- The Biefeld-Brown Effect --- p.10 / Chapter Chapter 3 --- Overview of Corona Discharge --- p.11 / Chapter 3.1 --- The Gaseous Discharge --- p.11 / Chapter 3.2 --- "Uniform Fields, Electrical Breakdown" --- p.12 / Chapter 3.3 --- "Non-uniform Fields, Corona Discharge" --- p.12 / Chapter 3.3.1 --- Positive Corona Discharge --- p.13 / Chapter 3.3.2 --- Negative Corona Discharge --- p.14 / Chapter 3.4 --- Conclusion --- p.15 / Chapter Chapter 4 --- Electrical Current-Voltage Model --- p.16 / Chapter 4.1 --- Experimental Setup and Measurement --- p.17 / Chapter 4.2 --- Basic Current to Voltage Relationship --- p.18 / Chapter 4.2.1 --- The Three Electrical Stages of the Ionic Flyers --- p.20 / Chapter 4.2.2 --- Proposed Quadratic Equation for the Current to Voltage Relationship --- p.22 / Chapter 4.3 --- Determination of the Current Gain C and the Onset Voltage V0 by the Structural Parameters of the Ionic Flyers --- p.22 / Chapter 4.3.1 --- The Electrode Length (L) --- p.24 / Chapter 4.3.2 --- The Gap Distance between the Wire-emitter and the Plate-collector (d) --- p.27 / Chapter 4.3.3 --- The Wire-emitter Radius (rw) --- p.31 / Chapter 4.3.4 --- The Plate-collector Height (h) --- p.36 / Chapter 4.3.5 --- The Electrode Enclosed Area (A) --- p.38 / Chapter 4.3.6 --- The Electrical Environmental Constant (Ke) --- p.43 / Chapter 4.4 --- Summary of the Experimental Derived Current-Voltage Model --- p.45 / Chapter Chapter 5 --- Mechanical Lift-force Models --- p.46 / Chapter 5.1 --- Experimental Setup and Measurement --- p.47 / Chapter 5.2 --- Basic Lift-force to Voltage Relationship --- p.49 / Chapter 5.2.1 --- The Initial Power Dissipation (IPD) --- p.50 / Chapter 5.2.2 --- The Maximum Lift-force --- p.51 / Chapter 5.2.3 --- Proposed Third-order Equation for the Lift-force to Power Relationship --- p.52 / Chapter 5.3 --- Determination of the Voltage Gain J and the Barrier Voltage Vfby the Structural Parameters of the Ionic Flyers --- p.54 / Chapter 5.3.1 --- The Electrical Length (L) --- p.55 / Chapter 5.3.2 --- The Gap Distance between the Wire-emitter and the Plate-collector (d) --- p.59 / Chapter 5.3.3 --- The Wire-emitter Radius (rw) --- p.63 / Chapter 5.3.4 --- The Plate-collector Height (h) --- p.66 / Chapter 5.3.5 --- The Electrode Enclosed Area (A) --- p.67 / Chapter 5.3.6 --- The Lift-force Environmental Constant (Kf) --- p.71 / Chapter 5.4 --- Summary of the Experimental Derived Lift-force Model --- p.73 / Chapter 5.5 --- Analysis on the Force/Power Ratio of the Ionic Flyers --- p.74 / Chapter Chapter 6 --- Further development of the Ionic Flyers --- p.76 / Chapter 6.1 --- Multi-directional Force Generation --- p.76 / Chapter 6.1.1 --- Linear Motion --- p.77 / Chapter 6.1.2 --- Rotation Motion --- p.78 / Chapter 6.2 --- Application of MEMS Motion Sensors and Wireless Signal Transmission --- p.80 / Chapter Chapter 7 --- Future Work --- p.84 / Chapter 7.1 --- Single-Emitter-Multiple-Collector Ionic Flyers --- p.84 / Chapter 7.2 --- Development of Miniaturized High-voltage Power Supply --- p.88 / Chapter Chapter 8 --- Conclusion --- p.90 / Chapter 8.1 --- The Electrical Current to Voltage Model --- p.90 / Chapter 8.2 --- The Mechanical Lift-force to Power Model --- p.91 / Chapter 8.3 --- The Force/Power Ratio Model --- p.91 / Appendix A --- p.92

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326218
Date January 2007
ContributorsChung, Chor Fung., Chinese University of Hong Kong Graduate School. Division of Mechanical and Automation Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiv, 97 leaves : ill. (chiefly col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0022 seconds