Chung, Chor Fung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 95-97). / Abstracts in English and Chinese. / Acknowledgements --- p.iv / Table of Contents --- p.v / List of Figures --- p.viii / List of Tables --- p.xiii / Nomenclature --- p.xiv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Development of Micro Indoor Surveillance Flyers --- p.1 / Chapter 1.1.1 --- Overview --- p.1 / Chapter 1.1.2 --- Intrinsic Problem of Surveillance Helicopters --- p.2 / Chapter 1.2 --- Proposed Non-moving Parts and Noiseless Flyers --- p.2 / Chapter 1.3 --- Organization of the remaining dissertation --- p.5 / Chapter Chapter 2 --- The Basic Structure of the Ionic Flyers --- p.7 / Chapter 2.1 --- The Components and the Structural Parameters of the Ionic Flyers --- p.7 / Chapter 2.2 --- Proposed Operational Principles --- p.8 / Chapter 2.2.1 --- The Electrohydrodynamic Effect --- p.9 / Chapter 2.2.2 --- The Biefeld-Brown Effect --- p.10 / Chapter Chapter 3 --- Overview of Corona Discharge --- p.11 / Chapter 3.1 --- The Gaseous Discharge --- p.11 / Chapter 3.2 --- "Uniform Fields, Electrical Breakdown" --- p.12 / Chapter 3.3 --- "Non-uniform Fields, Corona Discharge" --- p.12 / Chapter 3.3.1 --- Positive Corona Discharge --- p.13 / Chapter 3.3.2 --- Negative Corona Discharge --- p.14 / Chapter 3.4 --- Conclusion --- p.15 / Chapter Chapter 4 --- Electrical Current-Voltage Model --- p.16 / Chapter 4.1 --- Experimental Setup and Measurement --- p.17 / Chapter 4.2 --- Basic Current to Voltage Relationship --- p.18 / Chapter 4.2.1 --- The Three Electrical Stages of the Ionic Flyers --- p.20 / Chapter 4.2.2 --- Proposed Quadratic Equation for the Current to Voltage Relationship --- p.22 / Chapter 4.3 --- Determination of the Current Gain C and the Onset Voltage V0 by the Structural Parameters of the Ionic Flyers --- p.22 / Chapter 4.3.1 --- The Electrode Length (L) --- p.24 / Chapter 4.3.2 --- The Gap Distance between the Wire-emitter and the Plate-collector (d) --- p.27 / Chapter 4.3.3 --- The Wire-emitter Radius (rw) --- p.31 / Chapter 4.3.4 --- The Plate-collector Height (h) --- p.36 / Chapter 4.3.5 --- The Electrode Enclosed Area (A) --- p.38 / Chapter 4.3.6 --- The Electrical Environmental Constant (Ke) --- p.43 / Chapter 4.4 --- Summary of the Experimental Derived Current-Voltage Model --- p.45 / Chapter Chapter 5 --- Mechanical Lift-force Models --- p.46 / Chapter 5.1 --- Experimental Setup and Measurement --- p.47 / Chapter 5.2 --- Basic Lift-force to Voltage Relationship --- p.49 / Chapter 5.2.1 --- The Initial Power Dissipation (IPD) --- p.50 / Chapter 5.2.2 --- The Maximum Lift-force --- p.51 / Chapter 5.2.3 --- Proposed Third-order Equation for the Lift-force to Power Relationship --- p.52 / Chapter 5.3 --- Determination of the Voltage Gain J and the Barrier Voltage Vfby the Structural Parameters of the Ionic Flyers --- p.54 / Chapter 5.3.1 --- The Electrical Length (L) --- p.55 / Chapter 5.3.2 --- The Gap Distance between the Wire-emitter and the Plate-collector (d) --- p.59 / Chapter 5.3.3 --- The Wire-emitter Radius (rw) --- p.63 / Chapter 5.3.4 --- The Plate-collector Height (h) --- p.66 / Chapter 5.3.5 --- The Electrode Enclosed Area (A) --- p.67 / Chapter 5.3.6 --- The Lift-force Environmental Constant (Kf) --- p.71 / Chapter 5.4 --- Summary of the Experimental Derived Lift-force Model --- p.73 / Chapter 5.5 --- Analysis on the Force/Power Ratio of the Ionic Flyers --- p.74 / Chapter Chapter 6 --- Further development of the Ionic Flyers --- p.76 / Chapter 6.1 --- Multi-directional Force Generation --- p.76 / Chapter 6.1.1 --- Linear Motion --- p.77 / Chapter 6.1.2 --- Rotation Motion --- p.78 / Chapter 6.2 --- Application of MEMS Motion Sensors and Wireless Signal Transmission --- p.80 / Chapter Chapter 7 --- Future Work --- p.84 / Chapter 7.1 --- Single-Emitter-Multiple-Collector Ionic Flyers --- p.84 / Chapter 7.2 --- Development of Miniaturized High-voltage Power Supply --- p.88 / Chapter Chapter 8 --- Conclusion --- p.90 / Chapter 8.1 --- The Electrical Current to Voltage Model --- p.90 / Chapter 8.2 --- The Mechanical Lift-force to Power Model --- p.91 / Chapter 8.3 --- The Force/Power Ratio Model --- p.91 / Appendix A --- p.92
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326218 |
Date | January 2007 |
Contributors | Chung, Chor Fung., Chinese University of Hong Kong Graduate School. Division of Mechanical and Automation Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xiv, 97 leaves : ill. (chiefly col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0022 seconds