Return to search

Studium dvojhvězd / Transition from regular to chaotic motion in black hole magnetospheres

Cosmic black holes can act as agents of particle acceleration. We study properties of a system consisting of a rotating black hole immersed in a large-scale organized magnetic field. Electrically charged particles in the immediate neighborhood of the horizon are influenced by strong gravity acting together with magnetic and induced electric components. We relax several constraints which were often imposed in previous works: the magnetic field does not have to share a common symmetry axis with the spin of the black hole but they can be inclined with respect to each other, thus violating the axial symmetry. Also, the black hole does not have to remain at rest but it can instead perform fast translational motion together with rotation. We demonstrate that the generalization brings new effects. Starting from uniform electro-vacuum fields in the curved spacetime, we find separatrices and identify magnetic neutral points forming in certain circumstances. We suggest that these structures can represent signatures of magnetic reconnection triggered by frame-dragging effects in the ergosphere. We further investigate the motion of charged particles in these black hole magnetospheres. We concentrate on the transition from the regular motion to chaos, and in this context we explore the characteristics of chaos in...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:311590
Date January 2011
CreatorsKopáček, Ondřej
ContributorsKaras, Vladimír, Kulhánek, Petr, Rezzolla, Luciano
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0022 seconds