Return to search

Nonlinear dynamics of flexible structures using corotational beam elements

The purpose of this thesis is to develop corotational beam elements for the nonlinear dynamic analyse of flexible beam structures. Whereas corotational beam elements in statics are well documented, the derivation of a corotational dynamic formulation is still an issue. In the first journal paper, an efficient dynamic corotational beam formulation is proposed for 2D analysis. The idea is to adopt the same corotational kinematic description in static and dynamic parts. The main novelty is to use cubic interpolations to derive both inertia terms and internal terms in order to capture correctly all inertia effects. This new formulation is compared with two classic formulations using constant Timoshenko and constant lumped mass matrices. In the second journal paper, several choices of parametrization and several time stepping methods are compared. To do so, four dynamic formulations are investigated. The corotational method is used to develop expressions of the internal terms, while the dynamic terms are formulated into a total Lagrangian context. Theoretical derivations as well as practical implementations are given in detail. Their numerical accuracy and computational efficiency are then compared. Moreover, four predictors and various possibilities to simplify the tangent inertia matrix are tested. In the third journal paper, a new consistent beam formulation is developed for 3D analysis. The novelty of the formulation lies in the use of the corotational framework to derive not only the internal force vector and the tangent stiffness matrix but also the inertia force vector and the tangent dynamic matrix. Cubic interpolations are adopted to formulate both inertia and internal local terms. In the derivation of the dynamic terms, an approximation for the local rotations is introduced and a concise expression for the global inertia force vector is obtained. Four numerical examples are considered to assess the performance of the new formulation against two other ones based on linear interpolations. Finally, in the fourth journal paper, the previous 3D corotational beam element is extended for the nonlinear dynamics of structures with thin-walled cross-section by introducing the warping deformations and the eccentricity of the shear center. This leads to additional terms in the expressions of the inertia force vector and the tangent dynamic matrix. The element has seven degrees of freedom at each node and cubic shape functions are used to interpolate local transversal displacements and axial rotations. The performance of the formulation is assessed through five examples and comparisons with Abaqus 3D-solid analyses. / <p>QC 20131017</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-131701
Date January 2013
CreatorsLe, Thanh-Nam
PublisherKTH, Bro- och stÄlbyggnad, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-BKN. Bulletin, 1103-4270 ; 119

Page generated in 0.0278 seconds