Return to search

Effect of the Environment on the Fatigue Behaviour of Textile Organic Matrix Composite Materials for Aircraft Applications / Effet de l'environnement sur la fatigue de matériaux composites tissés à matrice organique pour applications aéronautiques

Les composites à matrice organiques (CMO) et fibre de carbone sont de plus en plus employés dans la réalisation de structures « tièdes » (aubes de fan, nacelles …) ; ces pièces peuvent être soumises, en service, à la fatigue mécanique, au cyclage thermique et à la fatigue thermo-mécanique. Bien qu’il existe une littérature consistante sur le comportement en fatigue des composites tissés, l'interaction entre fatigue et la dégradation liée à l'environnement à haute température n’a pas été encore bien exploitée. Le couplage entre les effets de la thermo-oxydation, le comportement mécanique (viscoélastique, viscoplastique) de la matrice organique à températures élevées et la dégradation par fatigue peut être néfaste pour le composite.Le but de ce travail est de caractériser et de modéliser - pour les composites tissés C/matrice organique - le comportement thermomécanique, l'apparition et le développement de l’endommagement liés aux mécanismes mécaniques cycliques (fatigue) sous environnement contrôlé (température et gaz).Une étude préliminaire sur un composite stratifiée [02/902]s a été menée pour pouvoir analyser les effets de l’environnement sur une architecture simple. La corrélation d’image numérique (CIN) et des scans μ-tomographiques (μCT) ont été employés pour le suivi et la caractérisation de l’endommagement de fatigue de composites tissés 2D à architecture complexe pour applications aéronautiques. Les effets de l’environnement sur la dégradation par fatigue ont été également explorés.L'objectif à long terme de cette étude est de fournir des outils expérimentaux et numériques pour renforcer la compréhension et la modélisation du couplage mécanique/endommagement/environnement pour la prédiction de la durée de vie et pour la proposition de protocoles d’essais accélérés réalistes de pièces « tièdes » en CMO. / In the next future, the employment of organic matrix/carbon fibre composites (OMC) is foreseen for the realization of “hot” structures: these parts may be subjected, in service, to mechanical fatigue (e.g. fan blades turbo-engines), thermal cycling and thermo-mechanical fatigue (e.g. aircraft structural parts). Though there is a consistent literature concerning the fatigue behaviour of woven composites, the interaction between fatigue and environmental degradation at high temperature has been poorly explored. Coupling between thermo-oxidation effects, mechanical (viscoelastic, viscoplastic) behaviour of the polymer matrix at high temperatures and degradation due to fatigue may be highly detrimental for the material. This work aims at characterizing and modelling - for carbon fibre/organic matrix (polyimide) textile composites – the thermomechanical behaviour, the onset and the development of damage related to cyclic mechanical mechanisms (fatigue) under controlled (temperature and gas) environment.A preliminary study on a cross-ply laminate [02/902]s has been carried out in order to analyse the environmental effect on a model sample. Digital Image Correlation (DIC) and μ-Computed Tomography (μCT) have been used to monitor and characterize the fatigue damage of 2D woven composites for aeronautical applications. The environmental effect on fatigue degradation have been also explored.The long-term aim of the study is to provide experimental and numerical tools to strengthen the understanding and the modelling of mechanics/damage/environment coupling for durability prediction.

Identiferoai:union.ndltd.org:theses.fr/2017ESMA0031
Date24 November 2017
CreatorsFoti, Federico
ContributorsChasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, Pannier, Yannick, Gigliotti, Marco
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds