Les recherches en biologie cellulaire ont été fortement marquées au cours des deux dernières décennies par la prise en compte accrue des propriétés mécaniques des cellules vivantes. Le développement remarquable d'un nouveau champ disciplinaire, la mécanobiologie, et l'étude des voies de signalisation associées, ou mécano-transduction, en sont des signes tangibles. Dans ce contexte, cette thèse est une contribution à la caractérisation des propriétés mécaniques actives et passives de cellules adhérentes à partir de leur réponse à des sollicitations imposées. <br />Cette approche, qui se définit formellement comme la résolution d'un problème inverse, a été développée dans une première partie de notre travail pour identifier le module d'élasticité intrinsèque de cellules adhérentes sollicités mécaniquement par pinces optiques ou pinces magnétiques. Ces techniques de micromanipulations permettent en effet de déformer le cytosquelette de la cellule par l'intermédiaire de billes fonctionnalisées accrochées aux récepteurs transmembranaires de la cellule. Cependant, l'analyse directe du couple sollicitation/réponse ne permet d'accéder qu'au module d'élasticité apparent de la cellule. L'originalité de notre travail est de proposer une amélioration significative de l'estimation du module d'Young de la cellule grâce à la prise en considération de plusieurs facteurs géométriques qui sont : (i) l'angle d'imprégnation de la bille dans la cellule, (ii) la hauteur sous bille de la cellule et (iii) la courbure de l'interface bille/cellule. Nous proposons notamment des fonctions explicites de ces paramètres permettant de corriger l'erreur commise lorsque la rigidité cellulaire est estimée sous l'hypothèse d'un milieu infini ou semi-infini. <br />La seconde partie de notre travail concerne la caractérisation, plus complexe, des propriétés mécaniques actives de cellules contractiles observées par vidéo-microscopie. Dans ce cas, l'illumination de la cellule est la fonction d'entrée, tandis que le champ de déplacement observé au cours du temps constitue la réponse cellulaire. Le problème inverse consiste ici à remonter au champ de contraintes intracellulaires à l'origine du champ de déplacement observé. Afin de mieux comprendre la dynamique contractile spontanée de cardiomyocytes isolés, nous avons dans un premier temps développé un algorithme de flot optique performant, basé sur la corrélation d'images, qui nous a permis de quantifier précisément l'évolution des déformations intracellulaires à l'échelle des sarcomères. A partir de ce champ de déformation spatio-temporel, nous avons pu reconstruire de façon originale la propagation des contraintes intracellulaires calcium-dépendantes qui gouvernent la périodicité et l'amplitude de la contraction du cardiomyocyte. <br />Nous montrons enfin en perspective l'intérêt de cette approche au niveau du tissulaire en présentant différents résultats obtenus en élastographie des artères coronariennes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00372508 |
Date | 23 January 2009 |
Creators | Kamgoue Tchouassi, Alain Caril |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds