Le modèle de boucles diluées \(A_2^{(2)}\) est étudié pour la géométrie d'un ruban de taille \(N\). Deux familles de conditions frontières sont connues pour satisfaire l’équation de Yang-Baxter à la frontière. Fixer ces conditions aux deux bouts du ruban donne un total de quatre modèles. Pour chaque modèle, les matrices de transfert, qui commutent entre elles, sont connues. Dans ce mémoire, la hiérarchie de fusion des matrices de transfert et les systèmes T et Y sont construits pour chaque modèle et pour un paramètre de croisement \(\lambda\) générique. Pour \(\lambda/\pi\) rationnel, il est prouvé qu'il existe une relation linéaire entre les matrices fusionnées qui ferme la hiérarchie de fusion en un système fini. Les relations de fusion et de fermeture permettent de calculer les premiers termes d'une expansion de l'énergie libre lorsque \(N\) est grand. Ces premiers termes correspondent à l'énergie libre de bulk et de bord. Les résultats analytiques sont en accord avec des résultats numériques obtenus pour de petits \(N\). Ce mémoire complète une étude des modèles \(A_2^{(2)}\) avec des conditions frontières périodiques (A. Morin-Duchesne, P.A. Pearce, J. Stat. Mech. (2019)). / We study the dilute \(A_2^{(2)}\) loop models on the geometry of a strip of width \(N\). Two families of boundary conditions are known to satisfy the boundary Yang-Baxter equation. Fixing the boundary condition on the two ends of the strip leads to four models. We construct the fusion hierarchy of commuting transfer matrices for the model as well as its T- and Y-systems, for these four boundary conditions and with a generic crossing parameter \(\lambda\). For \(\lambda/\pi\) rational we prove a linear relation satisfied by the fused transfer matrices that closes the fusion hierarchy into a finite system. The fusion relations allow us to compute the two leading terms in the large-\(N\) expansion of the free energy, namely the bulk and boundary free energies. These are found to be in agreement with numerical data obtained for small \(N\). The present work complements a previous study (A. Morin-Duchesne, P.A. Pearce, J. Stat. Mech. (2019)) that investigated the dilute \(A_2^{(2)}\) loop models with periodic boundary conditions.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/27987 |
Date | 02 1900 |
Creators | Boileau, Florence |
Contributors | Saint-Aubin, Yvan |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0026 seconds