Le progrès technologique de nos sociétés est intimement lié aux matériaux. La physique de la matière condensée cherche à expliquer, décrire et prédire leurs propriétés à partir de lois fondamentales. Bien que l’on connaisse assez bien les axiomes qui régissent notre univers, la combinaison d’un grand nombre de petits systèmes compris individuellement mais interagissants ensemble mène à des propriétés émergentes qui peuvent être complexes et difficilement
prévisibles. Dans cette thèse, nous étudions la supraconductivité non-conventionnelle dans les matériaux corrélés, un phénomène émergent des fortes interactions électroniques qui possède un immense potentiel technologique. Pour ce faire, nous réalisons des simulations numériques sur un matériau bien spécifique: le ruthénate de strontium.
Dans un premier temps, nous discutons des états normaux des matériaux corrélés devenant supraconducteurs. Alors que la théorie des bandes permet de décrire le continuum entre un isolant électrique et un métal, elle n’arrive pas à décrire les phénomènes émergeant des interactions à plusieurs électrons. Nous expliquons comment la théorie de la fonctionnelle de la densité permet d’obtenir la densité du niveau fondamental d’un système interagissant en le transformant vers un problème non-interagissant effectif. Elle peut également être employée pour les systèmes possédant un important couplage spin-orbite. Cependant, les fonctionnelles disponibles n’arrivent pas à bien incorporer les fortes corrélations électroniques. Une manière de corriger ce manque est d’employer la théorie du champ moyen dynamique. Cette dernière permet de capturer la dépendance en temps des interactions locales à un corps. Toutefois, la supraconductivité impliquant des paires d’électrons, il faut plutôt étudier des objets à deux corps afin de la caractériser. Nous discutons des critères nécessaires à la provocation de transitions supraconductrices, exprimés en termes de corrections du vertex. Également, nous présentons les paramètres d’ordre pour caractériser une phase supraconductrice.
La seconde partie se concentre sur la supraconductivité. D’abord, nous faisons un survol son historique, depuis sa découverte en 1911 jusqu’à celle de l’état supraconducteur du ruthénate de strontium. Ensuite, nous décrivons la supraconductivité conventionnelle, une classe particulière pour laquelle l’état ordonné est attribué à l’interaction entre les électrons et les vibrations du réseau cristallin. Puis, nous introduisons un autre mécanisme d’appariement: l’échange de fluctuations de spin et de charge. Finalement, nous présentons l’état des connaissances collectives modernes en ce qui a trait au ruthénate de strontium. Nos articles proposent de nouvelles avenues impliquant le couplage spin-orbite et les corrélations impaires en fréquences.
Nous terminons en introduisant différentes perspectives de recherche dans le domaine de la supraconductivité. / The technological progress of our societies is intimately linked with materials. Condensed matter physics tries to explain, describe and predict their properties from fundamental laws. Although we are quite familiar with the axioms that govern our universe, the combination of a large number of small systems understood individually but interacting together leads to emerging properties that can be complex and difficult to predict. In this thesis, we study unconventional superconductivity in correlated materials, a phenomenon emerging from strong electronic interactions that has immense technological potential. To do this, we carry out numerical simulations on a very specific material: strontium ruthenate.
First, we discuss the normal states of correlated materials becoming superconducting. While band theory can describe the continuum between an electrical insulator and a metal, it cannot describe the phenomena emerging from interactions with several electrons. We explain how density functional theory makes it possible to obtain the density of the fundamental level of an interacting system by mapping it into an effective non-interacting problem. It can also be used for systems with a large spin-orbit coupling. However, the available functionals do not manage to incorporate strong electronic correlations well. One way to correct this deficiency is to employ dynamical mean field theory. The latter makes it possible to capture the time dependence of interactions at the one body level. However, since superconductivity involves pairs of electrons, it is rather necessary to study two body objects in order to characterize it. We discuss the criteria necessary for inducing superconducting transitions, expressed in terms of vertex corrections. Also, we present the order parameters to characterize a superconducting phase.
The second part focuses on superconductivity. First, we review its history, from its discovery in 1911 to that of the superconducting state of strontium ruthenate. Next, we describe conventional superconductivity, a particular class for which the ordered state is attributed to the interaction between electrons and the vibrations of the crystal lattice. Then, we introduce another pairing mechanism: the exchange of spin and charge fluctuations. Finally, we present the state of modern collective knowledge about strontium ruthenate. Our articles propose new avenues involving spin-orbit coupling and odd frequency correlations.
We end by introducing different research perspectives in the field of superconductivity.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/26832 |
Date | 09 1900 |
Creators | Gingras, Olivier |
Contributors | Côté, Michel, Tremblay, André-Marie S. |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0179 seconds