A modelagem de equações estruturais é uma técnica estatística multivariada que permite analisar variáveis que não podem ser medidas diretamente, mas que podem ser estimadas através de indicadores. Dado o poder que esta técnica tem em acomodar diversas situações em um único modelo, sua aplicação vem crescendo nas diversas áreas do conhecimento. Diante disto, este trabalho teve por objetivo avaliar a incorporação de indicadores categóricos ordinais em modelos de equações estruturais, fazendo um resumo dos principais procedimentos teóricos e subjetivos presentes no processo de estimação de um modelo, avaliando as suposições violadas quando indicadores ordinais são utilizados para estimar variáveis latentes e criando diretrizes que devem ser seguidas para a correta estimação dos parâmetros do modelo. Mostramos que as correlações especiais (correlação tetracórica, correlação policórica, correlação biserial e correlação poliserial) são as melhores escolhas como medida de associação entre indicadores, que estimam com maior precisão a correlação entre duas variáveis, em comparação à correlação de Pearson, e que são robustas a desvios de simetria e curtose. Por fim aplicamos os conceitos apresentados ao longo deste estudo a dois modelos hipotéticos com o objetivo de avaliar as diferenças entre os parâmetros estimados quando um modelo é ajustado utilizando a matriz de correlações especiais em substituição à matriz de correlação de Pearson. / The structural equation modeling is a multivariate statistical technique that allows us to analyze variables that cant be measured directly but can be estimated through indicators. Given the power that this technique has to accommodate several situations in a single model, its application has increased in several areas of the knowledge. At first, this study aimed to evaluate the incorporation of ordinal categorical indicators in structural equation models, making a summary of the major theoretical and subjective procedures of estimating the present model, assessing the assumptions that are violated when ordinal indicators are used to estimate latent variables and creating guidelines to be followed to correct estimation of model parameters. We show that the special correlations (tetrachoric correlation, polychoric correlation, biserial correlation and poliserial correlation) are the best choices as a measure of association between indicators, that estimate more accurately the correlation between two variables, compared to Pearsons correlation, and that they are robust to deviations from symmetry and kurtosis. Finally, we apply the concepts presented in this study to two hypothetical models to evaluate the differences between the estimated parameters when a model is adjusted using the special correlation matrix substituting the Pearsons correlation matrix.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-09022011-110229 |
Date | 13 December 2010 |
Creators | Bruno Cesar Bistaffa |
Contributors | Lucia Pereira Barroso, Marcelo Angelo Cirillo, Julia Maria Pavan Soler |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds