Orientador: Douglas Domingues Bueno / Resumo: A busca por uma melhor compreensão das regiões do cérebro e suas funções nas ações humanas tem sido uma tarefa árdua, porém muito útil, principalmente para aplicações da engenharia de interface cérebro-máquina (ICM), bem como para o auxílio a diagnósticos médicos a partir de sinais obtidos dos pacientes em avaliação. No contexto do presente trabalho, destacam-se os trabalhos de interface cérebro-máquina (ICM) pela abrangência no envolvimento de técnicas, métodos e ferramentas comumente estudadas nos cursos de engenharia. Em particular, análises envolvendo técnicas de processamento de sinais de eletroencefalograma (EEG) têm se mostrado de significativa importância para o desenvolvimento dessa área. Uma abordagem amplamente utilizada nesse contexto é a ICM usando Potenciais Visuais Evocados de Estados Estacionários (SSVEP, do inglês Steady-State Visual Evoked Potentials), que, de forma geral, são sinais caracterizados pela resposta evocada do cérebro a estímulos visuais modulados em uma frequência específica. Assim, este trabalho tem o objetivo de propor uma generalização do coeficiente de correlação, conceito-base da análise de correlação canônica (CCA), técnica que tem se mostrado robusta e eficiente no reconhecimento de padrões, especialmente no caso dos SSVEP, e detalhar seu comportamento em função dos parâmetros relevantes para se estabelecer melhores práticas de uso em aplicações de ICM, incluindo fatores fisiológicos, técnicos e operacionais. / Abstract: The search for a better understanding of the brain's anatomy and its functions on human actions has been a harsh yet very useful task, especially for brain-computer interface engineering applications, as well as for medical diagnosis using signals from patients. In the context of this work, brain-computer interface (BCI) applications are highlighted due to their compreehensiveness related to techniques, methods and tools commonly studied in engineering. In particular, analyses involving eletroencephalogram (EEG) signals processing have proven to be of great significance for developing this field of study. A widely used approach is Steady State Visual Evoked Potentials (SSVEP) based BCI, which, in general, are signals characterized by the brain’s evoked response to visual stimuli modulated at a certain frequency. This work aims thus to propose a generalization of the correlation coefficient, which entails Canonical Correlation Analysis (CCA), a technique that has presented robustness and efficiency for pattern recognition, especially in SSVEP-based BCIs, and describe its behavior under relevant varying parameters to stablish better use practices in BCI applications, comprising physiological, technical and operational factors. / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000912767 |
Date | January 2018 |
Creators | Brogin, João Angelo Ferres. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira). |
Publisher | Ilha Solteira, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | f. |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0023 seconds