La spectroscopie de fluorescence de molécule individuelle a révolutionné le domaine des sciences biophysiques, en permettant la visualisation des interactions moléculaires dynamiques et des caractéristiques nanoscopiques avec une haute résolution spatio-temporelle. Le contrôle des réactions enzymatiques et l'étude de la dynamique de diffusion de molécules individuelles permet de comprendre l'influence et le contrôle de ces entités nanoscopiques sur plusieurs processus biophysiques. La nanophotonique basée sur la plasmonique offre des nouvelles opportunités de suivi d'évènements à molécule unique, puisque il est possible de confiner des champs électromagnétiques dans les hotspots à nano-échelle, à dimensions spatiales comparables à une molécule unique. Dans ce projet de thèse, nous explorons plusieurs plateformes de nanoantennas photoniques avec des hotspots, et nous avons démontré les applications dans l'amélioration de la spectroscopie de fluorescence de molécule individuelle. En utilisant la fluorescence burst analysis, l'analyse de fluctuations temporelle de fluorescence,TCSPC, nous quantifions les facteurs d'amélioration de fluorescence, les volumes de détection de nanoantennas; ainsi, nous discutons l'accélération de fluorescence photo dynamique. En alternative aux structures plasmoniques, des antennes diélectriques basées sur les dimères en silicone ont aussi démontré d'améliorer la détection de fluorescence à molécule unique, pour des concentrations micro molaires physiologiquement pertinentes. En outre, nous explorons des systèmes planaires antennas in box pour l'investigation de la dynamique de diffusion de la PE et de la SM dans les membranes des cellules vivantes. / Single-molecule fluorescence spectroscopy has revolutionized the field of biophysical sciences by enabling visualization of dynamic molecular interactions and nanoscopic features with high spatiotemporal resolution. Monitoring enzymatic reactions and studying diffusion dynamics of individual molecules help us understand how these nanoscopic entities influence and control various biochemical processes. Nanophotonic antennas can efficiently localize electromagnetic radiation into nanoscale spatial dimensions comparable to single bio-molecules. These confined illumination hotspots there by offer the opportunity to follow single-molecule events at physiological expression levels. In this thesis, we explore various photonic nanoantenna platforms and demonstrate their application in enhanced single-molecule fluorescence detection. Using fluorescence burst analysis, fluorescence correlation spectroscopy (FCS), time-correlated TCSPC measurements, and near field simulations, we quantify nanoantenna detection volumes, fluorescence enhancement factors and discuss the fluorescence photodynamic accelerations mediated by optical antennas. Further, using resonant planar antenna-in-box devices we investigate the diffusion dynamics of phosphoethanolamine and sphingomyelin on the plasma membrane of living cells and discuss the results in the context of lipid rafts. Together with cholesterol depletion experiments, we provide evidence of cholesterol-induced nanodomain partitioning within less than 10~nm diameters and characteristic times being ~100 microseconds.
Identifer | oai:union.ndltd.org:theses.fr/2017AIXM0523 |
Date | 10 November 2017 |
Creators | Regmi, Raju |
Contributors | Aix-Marseille, Universitat politécnica de Catalunya, Wenger, Jérôme, García-Parajo, María |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.1129 seconds