Detecção de objetos é um problema clássico em visão computacional, presente em aplicações como vigilância automatizada, análise de imagens médicas e recuperação de informação. Dentre as abordagens existentes na literatura para resolver esse problema, destacam-se métodos baseados em reconhecimento de pontos-chave que podem ser interpretados como diferentes implementações de um mesmo arcabouço. O objetivo desta pesquisa de doutorado é desenvolver e avaliar uma versão generalizada desse arcabouço, na qual reconhecimento de pontos-chave é substituído por reconhecimento de grafos-chave. O potencial da pesquisa reside na riqueza de informação que um grafo pode apresentar antes e depois de ser reconhecido. A dificuldade da pesquisa reside nos problemas que podem ser causados por essa riqueza, como maldição da dimensionalidade e complexidade computacional. Três contribuições serão incluídas na tese: a descrição detalhada de um arcabouço para detecção de objetos baseado em grafos-chave, implementações fiéis que demonstram sua viabilidade e resultados experimentais que demonstram seu desempenho. / Object detection is a classic problem in computer vision, present in applications such as automated surveillance, medical image analysis and information retrieval. Among the existing approaches in the literature to solve this problem, we can highlight methods based on keypoint recognition that can be interpreted as different implementations of a same framework. The objective of this PhD thesis is to develop and evaluate a generalized version of this framework, on which keypoint recognition is replaced by keygraph recognition. The potential of the research resides in the information richness that a graph can present before and after being recognized. The difficulty of the research resides in the problems that can be caused by this richness, such as curse of dimensionality and computational complexity. Three contributions are included in the thesis: the detailed description of a keygraph-based framework for object detection, faithful implementations that demonstrate its feasibility and experimental results that demonstrate its performance.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-22012014-080625 |
Date | 27 April 2012 |
Creators | Marcelo Hashimoto |
Contributors | Roberto Marcondes Cesar Junior, Odemir Martinez Bruno, Carlos Hitoshi Morimoto, João Paulo Papa, Ricardo da Silva Torres |
Publisher | Universidade de São Paulo, Ciência da Computação, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds