Dans l’industrie aéronautique, le remplacement progressif des alliages d’aluminium par des alliages de magnésium est une des solutions pour alléger les avions et ainsi lutter contre le bruit et la pollution. En effet, avec une densité inférieure d’un tiers à celle de l’aluminium, le magnésium est le plus léger des métaux de structure. Toutefois, sa réactivité chimique importante restreint considérablement son domaine d’application. Malgré de bonnes propriétés mécaniques, un des problèmes des alliages de Mg est leur résistance à la corrosion, mal connue et peu maîtrisée en pratique. Les alliages de magnésium enrichis en aluminium (type AZ91D et AM50) sont actuellement les plus utilisés. Ils sont constitués de deux phases principales : la phase alpha et le précipité Mg17Al12 (phase ß). Ces alliages peuvent être synthétisés de plusieurs façons différentes : les procédés les plus utilisés actuellement sont la coulée sous pression (high pressure die casting) et la coulée gravitaire. La première partie de ce travail est consacrée à l’étude microstructurale et électrochimique des alliages de magnésium enrichis en aluminium et coulés par gravité ou sous pression. L’influence du pourcentage d’aluminium, ainsi que celle de l’état de surface, ont été étudiées. Dans des conditions de coeur, les alliages de magnésium présentent un comportement passif. L’augmentation de la teneur en aluminium permet généralement une meilleure tenue à la corrosion. Cependant, elle est aussi à l’origine du phénomène de piqûration aléatoire, engendré par une accumulation locale de phase ß. Dans des conditions de peau, les alliages coulés sous pression présentent systématiquement un comportement actif et, dans ce cas, l’augmentation de la teneur en aluminium a un effet néfaste sur la tenue à la corrosion, dû à la formation de larges plages de phase ß en surface engendrées par le processus d’élaboration lui-même. Enfin, le procédé d’élaboration par coulée gravitaire induit une forte rugosité qui procure aux alliages une mauvaise tenue à la corrosion dans des conditions de peau. La seconde partie de ce travail est une étude comparative entre les différents traitements de conversion chimique les plus utilisés actuellement sur les alliages de magnésium : les traitements de phosphatation amorphe ou à base de Ce(III) s’avèrent plus performants que celui de chromatation qui est désormais interdit en raison de la toxicité du chrome hexavalent. En revanche, le traitement à base de stannates s’est avéré très décevant. Cette étude s’est inscrite dans le cadre du projet européen IDEA (6ème PCRD) en collaboration avec une douzaine de partenaires européens et israéliens. / In the aeronautical industry, aluminium alloys are progressively replaced by magnesium alloys, so as to lighten planes and consequently decrease noise and pollution. Actually, with a density of one third lower than the one of aluminium, magnesium is the lightest structural metal. However, its high chemical reactivity limits its application field: in spite of good mechanical properties, the main drawback of magnesium alloys is their corrosion resistance, which is insufficiently known. At the moment, magnesium alloys enriched with aluminium (as AZ91D or AM50 ones) are among the most used. They are made of two main phases: alpha-phase and Mg17Al12 compound (ß-phase). These alloys can be synthesized of different ways. High pressure die casting and gravity die casting are among the most used processes. The first part of this work is a microstructural and electrochemical study of magnesium alloys enriched with aluminium and obtained with gravity or high pressure die castings. The aluminium content effect, as well as the surface state, were investigated. In bulk conditions, magnesium alloys show a passive behaviour. The higher the aluminium content is, the better the corrosion resistance is. But, for highest aluminium contents, an uncertain pitting phenomenon can also be induced, due to a local accumulation of ß-phase. In skin conditions, high pressure die casting alloys always show an active behaviour, and the higher the aluminium content is, the worse the corrosion resistance is, because of the formation of big areas of ß-phase near the alloy’s surface and due to the casting process itself. At least, the gravity die casting process induces a strong roughness which strongly decreases the magnesium alloys corrosion resistance in skin conditions. The second part of this work is a comparative study between the different chemical conversion coatings which are among the most used on magnesium alloys: phosphate-based and Ce(III)-based treatments are more corrosion resistant than chromate-based treatment. This last one is now forbidden because of the high toxicity of chromium (VI). In another hand, stannate-based treatment is the less protective one. This study was performed in the framework of the IDEA project (6th PCRD), in collaboration with a dozen of Israeli and European partners.
Identifer | oai:union.ndltd.org:theses.fr/2008NAN10107 |
Date | 13 June 2008 |
Creators | Juers, Caroline |
Contributors | Nancy 1, Steinmetz, Jean |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds