Return to search

Comparative study of the corrosion behaviour of conventional carbon steel and corrosion resistant reinforcing bars

Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., Highway Bridges, Marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed in order to avoid these high cost repairs. Thus it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements.<p>
This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4 potentiostat manufactured by GAMRY INSTRUMENTS. DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution. EIS measurements were applied on samples subjected to incremental chloride additions. Furthermore, carbon steel rebars embedded in concrete samples pre-contaminated with chloride ions added to the mix will be used to relate corrosion rates inside concrete to those obtained from synthetic solutions and to measure moisture content inside concrete using a nondestructive TDR-based technique.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-08222009-235722
Date10 September 2009
CreatorsMohamed, Nedal
ContributorsWegner, Leon, Feldman, Lisa, Mazurek, Kerry, Evitts, Richard, Odeshi, Akindele, Boulfiza, Mohamed
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-08222009-235722/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0023 seconds