Return to search

Primordial non-Gaussianities: Theory and Prospects for Observations / Não-Gaussianidades Primordiais: Teoria e Perspectivas para Observações

Early Universe physics leaves distinct imprints on the Cosmic Microwave Background (CMB) and Large-Scale Structure (LSS). The current cosmological paradigm to explain the origin of the structures we see in the Universe today (CMB and LSS), named Inflation, says that the Universe went through a period of accelerated expansion. Density fluctuations that eventually have grown into the temperature fluctuations of the CMB and the galaxies and other structures we see in the LSS come from the quantization of the scalar field (inflaton) which provokes the accelerated expansion. The most simple inflationary model, which contains only one slowly-rolling scalar field with canonical kinetic term in the action, produces a power-spectrum (Fourier transform of the two-point correlation function) approximately scale invariant and an almost null bispectrum (Fourier transform of the three-point correlation function). This characteristic is called Gaussianity, once random fields that follow a normal distribution have all the odd moments null. Yet, more complex inflationary models (with more scalar fields and/or non-trivial kinetic terms in the action, etc) and possible alternatives to inflation have a non-vanishing bispectrum which can be parametrized by a non-linearity parameter f_NL, whose value differs from model to model. In this work we studied the basic ingredients to understand such statements and focused on the observational evidences of this parameters and how the current and upcoming galaxy surveys are able to impose constraints to the value of f_NL with a better accuracy, through the multi-tracer technique, than those obtained by means of CMB measurements. / A física do Universo primordial deixa sinais distintos na Radiação Cósmica de Fundo (CMB) e Estrutura em Larga Escala (LSS). O paradigma atual da cosmologia explica a origem das estruturas que vemos hoje (CMB e LSS) através da inflação, teoria que diz que o Universo passou por um período de expansão acelerada. As flutuações de densidade que eventualmente crescem, dando origem às flutuações de temperatura da CMB, às galáxias e outras estruturas que vemos na LSS, provém da quantização do campo escalar (inflaton) que provoca a tal expansão acelerada. O modelo inflacionário mais simples, o qual contém um único campo escalar nas condições de rolamento lento e termo cinético canônico da ação, possui o espectro de potências (transformada de Fourier da função de correlação de dois pontos) aproximadamente invariante de escala e o bispectro (transformada de Fourier da função de correlação de três pontos) aproximadamente nulo. Tal característica é conhecida por Gaussianidade, uma vez que campos aleatórios cuja distribuição é uma normal tem todas as funções de correlação de ordem ímpar nulas. Contudo, modelos inflacionários mais complexos (mais campos escalares, termos cinéticos não-triviais na ação, etc) e alternativas possíveis à inflação possuem um bispectro não nulo, o qual pode ser parametrizado através do parâmetro de não-linearidade f_NL, cujo valor difere de modelo para modelo. Neste trabalho estudamos os ingredientes básicos para entender tais afirmações e focamos nas evidências observacionais desse parâmetro e como os levantamentos de galáxias atuais e futuros podem impor restrições ao valor de f_NL com uma precisão maior, através da técnica de múltiplos traçadores, do que aquelas obtidas com medidas da CMB.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24092018-155602
Date28 August 2018
CreatorsGuandalin, Caroline Macedo
ContributorsAbramo, Luis Raul Weber
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0026 seconds