Les trous noirs supermassifs résident dans les centres de la plupart des galaxies massives et on observe des corrélations entre leurs masses et les propriétés de leurs galaxies hôtes. De plus, on observe des trous noirs de plus d’un milliard de masses solaires quelques centaines de millions d’années seulement après le Big Bang. Ces trous noirs supermassifs présents dans l’univers jeune ne sont que le sommet de l’iceberg de l’ensemble de la population de trous noirs, mais ils mettent en question notre compréhension de la formation et de la croissance des premiers trous noirs. Notre nouvelle méthode améliorant le calcul de la densité de colonne de H2 donne des probabilités pour former des graines massives de trous noirs qui sont plus d’un ordre de grandeur plus élevées que prédit précédemment. Nous trouvons que CR7 pourrait être le premier candidat à héberger un tel trou noir formé par effondrement direct et nous démentons l’existence initialement revendiquée d’une population stellaire massive primordial dans CR7. Nous calculons la densité des taux de fusion des trous noirs binaires des premières étoiles et leurs taux de détection avec aLIGO. Notre modèle démontre que les détections des ondes gravitationnelles à venir au cours des prochaines décennies permettront d’imposer des contraintes plus strictes sur les propriétés des premières étoiles et donc sur les scénarios de formation des premiers trous noirs. Nous développons un modèle analytique en 2D de la rétroaction des noyaux actifs de galaxie pour démontrer qu’un profil de disque plus réaliste réduit la quantité de gaz qui est éjectée du halo par rapport aux modèles 1D existants. La rétroaction empêche l’accretion de gaz sur le trou noir central pendant seulement ∼1 million d’année environ, ce qui permet une accretion de gaz presque continue dans le plan du disque. Avec cette thèse, je contribue à une meilleure compréhension de la formation et la croissance des premiers trous noirs supermassifs. / Supermassive black holes reside in the centres of most massive galaxies and we observe correlations between their mass and properties of the host galaxies. Besides this correlation between a galaxy and its central black hole (BH), we see BHs more massive than one billion solar masses already a few hundred million years after the Big Bang. These supermassive BHs at high redshift are just the tip of the iceberg of the entire BH population, but they challenge our understanding of the formation and growth of the first BHs. Our improved method to calculate H2 self-shielding yields probabilities to form massive seed BHs that are more than one order of magnitude higher, than previously expected. We find that CR7 might be the first candidate to host such a direct collapse BH and we disprove the initially claimed existence of a massive metal-free stellar population in CR7. We calculate the merger rate density of binary BHs from the first stars and their detection rates with aLIGO. Our model demonstrates that upcoming detections of gravitational waves in the next decades will allow to put tighter constraints on the properties of the first stars and therefore on formation scenarios of the first BHs. We develop a 2D analytical model of active galactic nuclei-driven outflows to demonstrate that a more realistic disc profile reduces the amount of gas that is ejected out of the halo, compared to existing 1D models. The outflow prevents gas accretion on to the central BH for only about ∼1Myr, which permits almost continuous gas inflow in the disc plane. With this thesis, I contribute to a better understanding of the formation and growth of the first supermassive BHs.
Identifer | oai:union.ndltd.org:theses.fr/2017PA066386 |
Date | 22 September 2017 |
Creators | Hartwig, Tilman |
Contributors | Paris 6, Volonteri, Marta |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0014 seconds