The term “granular material” describes any assembly of macroscopic particles. This broad definition encompasses a wide variety of everyday materials, for example sand, cereals, gravel and powders. However, despite their commonplace nature, to date no universally accepted set of constitutive equations exists to describe the behaviour of these materials. Thermomechanics and micromechanics are two modelling methodologies previously employed in separate efforts to represent granular behaviour. In this thesis, the two theories are integrated to develop new models of idealised granular materials. (For complete abstract open document)
Identifer | oai:union.ndltd.org:ADTP/245075 |
Creators | Walsh, Stuart D. C. |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Terms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Open Access |
Page generated in 0.0013 seconds