Cette thèse porte sur la construction de nouveaux exemples de surfaces minimales dérivées de la famille de surfaces de Costa-Hoffman-Meeks. Il s'agit d'une famille de surfaces minimales complètes plongées avec trois bouts et genre k > 0. Soit M_k la surface de Costa_Hoffman_Meeks de genre k. Dans le chapitre 1, j'ai démontré que M_k est non dégénérée pour k > 37. J'ai donc étendu les résultats de S. Nayatani qui assuraient que la surface M_k est non dégénérée seulement pour k=1,...,37. Ce résultat permet de montrer dans les chapitres 2 et 3 l'existence de nouveaux exemples de surfaces minimales de genre g arbitraire à l'aide d'une procédure de collage d'autres surfaces déjà connues (parmi lesquelles y figure la surface M_k). Sans ceci, ces résultats ne seraient valables que pour k < 38. En particulier dans le chapitre 2, j'ai démontré l'existence, dans H^2 x R, (H^2 étant le plan hyperbolique) d'une famille de surfaces minimales plongées inspirées de M_k, pour tout k > 0. Ce résultat peut être censé un cas particulier d'un théorème générale de désingularisation de l'intersection de deux surfaces minimales annoncé par N. Kapouleas et jamais publié. Le chapitre 3 est consacré à la construction de trois familles de surfaces minimales simplement périodiques plongées dans R^3 dont le quotient a genre arbitraire. Les résultats présentés dans ce chapitre (obtenus en collaborations avec L. Hauswirth et M. Rodríguez) généralisent plusieurs anciennes constructions / This thesis is devoted to the construction of new examples of minimal surfaces derived from the family of surfaces if Costa-Hoffman-Meeks. Surfaces in this family are complete embedded with 3 ends and genus k > 0. Let M_k denote the surface of Costa-Hoffman-Meeks of genus k. In chapter 1 I showed M_k is non degenerate for k > 37. So I extended the results of S. Nayatani which insured M_k is non degenerate only for k=1,...,37. That allows to prove in chapters 2 and 3 the existence of new examples of minimal surfaces by a gluing procedure involving already known surfaces (among which figures M_k). Without it theses results would hold only for k < 38. In particular in chapter 2 I showed the existence in H^2 x R (where H^2 denotes the hyperbolic plane) of a family of surfaces inspired to M_k, for all k > 0, which are complete and embedded. This result can be considered as a particular case of a general theorem of desingularization of the intersection of two minimal surfaces announced by N. Kapouleas and never published. Chapter 3 is devoted to the construction of 3 families of singly periodic minimal surfaces, embedded in R^3, whose quotient has an arbitrary value of the genus. The results showed in this chapter (obtained in collaboration with L. Hauswirth and M. Rodríguez) generalize many previous constructions
Identifer | oai:union.ndltd.org:theses.fr/2008PEST0236 |
Date | 28 May 2008 |
Creators | Morabito, Filippo |
Contributors | Paris Est, Università degli studi Roma Tre, Hauswirth, Laurent, Pontecorvo, Massimiliano |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0014 seconds