Cette thèse porte sur la modélisation des ondes élastodynamiques dans deux situations particulières qui pénalisent les méthodes numériques utilisées pour simuler ces phénomènes. Dans la première partie, on se place dans le cas où les ondes de pression (ondes P) se propagent à une vitesse beaucoup plus grande que celle des ondes de cisaillement (ondes S). Les modèles numériques utilisés habituellement pour traiter cette configuration sont pénalisés par la plus petite vitesse qui dicte le choix du pas du schéma. Nous proposons ici un schéma qui découple numériquement, dans le volume, les ondes P et les ondes S, pour deux types de conditions de bord en utilisant la décomposition du déplacement en potentiels de Lamé, en deux dimensions. Les conditions aux limites de Dirichlet homogènes, qui sont des conditions essentielles pour la formulation classique en déplacement, deviennent des conditions naturelles, mais non standard, pour la formulation en potentiels qui se présente comme un système de deux équations d'ondes couplées par les conditions aux limites. Cette formulation préserve une énergie équivalente à l'énergie élastodynamique. Nous construisons un schéma éléments finis en espace et utilisons un thêta-schéma en temps sur les termes de bord afin de ne pas pénaliser la CFL et mener à une condition sur le pas de temps indépendante des termes de couplage au bord. Ce schéma préserve une énergie discrète. Le cas des conditions de surface libre mène à des instabilités. Nous les avons traitées comme des perturbations des conditions de Dirichlet, ce qui permet d'obtenir de bons résultats dans le domaine fréquentiel mais donne naissance à de sévères instabilités après discrétisation en temps. La seconde partie de la thèse est consacrée à la construction, l'analyse et la validation de conditions de transmission effectives (CTE) à travers une couche mince de matériau homogène et isotrope d'épaisseur constante h. Ici, la finesse de la couche affecte les schémas explicites usuels car le maillage de la couche avec des éléments suffisamment petits entraîne une diminution analogue du pas de temps critique via la condition CFL, tandis que l'on espère avec les CTE obtenir un pas de temps indépendant de l'épaisseur de la couche. Une analyse complète du cas de la bande mince rectiligne est donnée en deux et trois dimensions. Les conditions obtenues sont stables via la conservation d'une énergie et l'ordre de l'erreur d'approximation par rapport à l'épaisseur de la couche pour les conditions d'ordre 2 est de O(h^3). Des résultats numériques sont présentés pour les configurations bi et tridimensionnelles, ils valident les résultats de stabilité, d'estimation d'erreur et de conditions de stabilité de schémas en temps proposés, qui sont des modifications du schéma explicite utilisé en l'absence de couche mince. Enfin, le traitement d'une couche curviligne est effectué dans le cas bidimensionnel. Sa stabilité est à nouveau vérifiée par conservation d'énergie et des résultats numériques sont également présentés.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01060178 |
Date | 04 July 2014 |
Creators | Burel, Aliénor |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds