Dans cette thèse, nous présentons d'abord une nouvelle stratégie à base de bandes pour réduire les graphes impliqués dans la segmentation binaire par graph cuts. Ceci est effectué en testant localement si un noeud est réellement utile au calcul du flot maximum dans ces graphes. À l'instar des méthodes antérieures à base de bandes, les noeuds restants sont typiquement localisés dans des bandes étroites autour des contours de l'objet à segmenter. Dans un premier temps, nous proposons un test heuristique pour décider si un noeud peut être ajouté au graphe réduit qui peut être calculée en temps constant (excepté pour les bords de l'image). Lorsque le degré de régularisation est élevé, des paramètres supplémentaires sont intégrés à ce test pour à la fois réduire davantage les graphes et supprimer les zones dues au bruit dans les segmentations. Lorsque le degré de régularisation est moindre, le temps requis par cet algorithme est même compensé par le temps de calcul du flot maximum sur le graphe réduit. Dans cette situation, nous montrons expérimentalement que cet algorithme réduit significativement la consommation mémoire des graph cuts standard tout en conservant une erreur quasi nulle sur les segmentations. Dans un second temps, nous décrivons un autre test avec un coût computationnel légèrement supérieur. Nous démontrons que chaque noeud vérifiant ce test peut être retiré sans altérer la valeur du flot maximum. Des expériences numériques permettent d'exhiber des performances équivalentes au test heuristique. Dans une seconde partie, nous présentons une application de cette technique de réduction à la segmentation semi-interactive de tumeurs pulmonaires dans des images CT 3D. L'originalité de ce travail consiste à intégrer un a priori sur la localisation des graines objet et contrôler leur propagation grâce à un algorithme de Fast Marching basé sur le gradient de l'image. Les résultats quantitatifs et qualitatifs comparés aux vérités terrains fournies montrent une délimitation précise des tumeurs avec un coefficient de Dice supérieur à 80\% en moyenne.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00682811 |
Date | 07 December 2011 |
Creators | Lermé, Nicolas |
Publisher | Université Paris-Nord - Paris XIII |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds