Coupled two-dimensional HPLC systems were developed for the separation of complex sample matrices. Low molecular weight polystyrene oligomers were used as model compounds for the development of these systems since the sample dimensionality of oligostyrenes could be defined and classified according to two sample characteristics. That is, oligostyrenes could be classed as a two-dimensional sample, where one sample dimension is the variation in the number of monomers that make up oligomeric units determining the weight of the polymer, with a second sample dimension being the variation in stereoisomerism of each oligomer. During this study it was found that by combining two separation dimensions consisting of C18 and carbon clad zirconia (CCZ) phases separation of oligostyrenes according to molecular weight and stereochemistry was possible in coupled two-dimensional systems. The C18 phase separated the sample according to molecular weight, while the CCZ phase separated the sample according to the stereochemistry. The stereoisomer separations of the oligostyrenes reported on the CCZ surface were far superior to those previously reported in the literature. The efficiency of the separation process in a coupled two-dimensional system was then evaluated by studying the variation in band variance of a test probe. The results of the study indicated that the performance of a two-dimensional separation process was highly dependent upon the mobile phase compatibility, even when solvents were completely miscible and of similar polarities. Extracts from 17 species of Australian native plants were examined for xanthine oxidase inhibitory activity, the enzyme responsible for the formation of the disease gout. Chromatographic separation was conducted on plant extracts found to possess significant inhibitory activity against xanthine oxidase, with an extract from the species Clerodendrum floribundum R. Br. found to possess the greatest activity of the species examined. A two-dimensional separation of a crude extract from Clerodendrum floribundum R. Br. was conducted using one of the developed HPLC systems, to illustrate the use of such a system for the separation of a non-model complex sample mixture / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:ADTP/182237 |
Date | January 2002 |
Creators | Sweeney, Alan Peter, University of Western Sydney, College of Science, Technology and Environment, School of Science, Food and Horticulture |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Source | THESIS_CSTE_SFH_Sweeney_A.xml |
Page generated in 0.0017 seconds