The mechanism of metal material failure due to inelastic cyclic deformations is commonly described as Low-Cycle Fatigue (LCF). Fracture in steel structures caused by earthquakes can be associated with this mechanism. Mathematical expressions describing the material deterioration due to LCF are often referred to as LCF laws. The accurate determination of the safety of steel structures against earthquake-induced failure requires the use of LCF laws which have been sufficiently validated with experimental test data.
The present study combined experimental testing and computational simulation to enhance the understanding of structural steel fracture due to LCF. The experiments were conducted in specimens extracted from the flat and corner regions of two rectangular steel hollow sections with different thickness. A total of 60 cylindrical specimens with a circumferential notch were subjected to different combinations of axial and torsional loading. The loading protocols and notch geometry were designed to produce different stress states at the location of fracture initiation. Finite element analyses were conducted to obtain the stress state and inelastic strains at the fracture initiation location. This information was then used for the calibration of five existing LCF laws. The calibration also allowed the comparative evaluation of the capability of the different laws to capture fracture initiation for different stress states, with a single set of values for the various parameters.
The accuracy of the calibrated LCF laws to predict fracture initiation in a large-scale test was also investigated. To this end, a test was conducted on a rectangular steel tube subjected to cyclic axial loading. A finite element analysis of this test was conducted, and predictions of the instant and location of fracture initiation using the calibrated LCF laws were compared with the experimental observations. / Doctor of Philosophy / The mechanism of material failure due to repeated cycles of large deformations is denoted as Low-Cycle Fatigue (LCF); this failure mechanism can occur in steel structures subjected to loading conditions such as those induced by earthquakes. Mathematical expressions that evaluate the material deterioration due to LCF are often used to predict the instant and location of fracture initiation in small-scale and large-scale tests.
An experimental program was conducted for the study of fracture associated with LCF. A total of 60 specimens were fabricated with material extracted from the flat and corner regions of two rectangular steel tubes; the applied loads elongated and/or twisted the specimens until they ruptured. Computational simulations of these tests were conducted to obtain key information at the location of the observed fracture initiation. This information was used to adjust five mathematical expressions suggested by previous researchers that could predict the same instant of fracture initiation observed in the experiments. The accuracy of the predictions from each of these mathematical expressions was evaluated.
The accuracy of these mathematical expressions to predict fracture initiation in a large-scale test was also investigated. To this end, an experiment was conducted on a rectangular steel tube subjected to repeated cycles of deformation. A computational simulation of this test was also developed, and predictions of the instant and location of fracture initiation were compared with the experimental observations.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/100051 |
Date | 21 September 2020 |
Creators | Tola Tola, Adrian Patricio |
Contributors | Civil and Environmental Engineering, Koutromanos, Ioannis, Eatherton, Matthew R., Leon, Roberto T., Charney, Finley A. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds