Le problème de tournées de véhicules est un des problèmes d'optimisation combinatoire les plus connus et les plus difficiles. Il s'agit de déterminer les tournées optimales pour une flotte de véhicules afin de servir un ensemble donné de clients. Dans les problèmes classiques de transport, chaque client est normalement servi à partir d'un seul nœud (ou arc). Pour cela, on définit toujours un ensemble donné de nœuds (ou arcs) obligatoires à visiter ou traverser, et on recherche la solution à partir de cet ensemble de nœuds (ou arcs). Mais dans plusieurs applications réelles où un client peut être servi à partir de plus d'un nœud, (ou arc), les problèmes généralisés qui en résultent sont plus complexes. Le but principal de cette thèse est d'étudier trois problèmes généralisés de tournées de véhicules. Le premier problème de la tournée sur arcs suffisamment proche (CEARP), comporte une application réelle intéressante en routage pour le relevé des compteurs à distance ; les deux autres problèmes, problème de tournées couvrantes multi-véhicules (mCTP) et problème généralisé de tournées sur nœuds (GVRP), permettent de modéliser des problèmes de conception des réseaux de transport à deux niveaux. Pour résoudre ces problèmes, nous proposons une approche exacte ainsi que des métaheuristiques. Pour développer la méthode exacte, nous formulons chaque problème comme un programme mathématique, puis nous construisons des algorithmes de type branchement et coupes. Les métaheuristiques sont basées sur le ELS (ou Evolutionary Local Search) et sur le GRASP (ou Greedy Randomized Adaptive Search Procedure). De nombreuses expérimentations montrent la performance de nos méthodes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00782375 |
Date | 14 December 2012 |
Creators | Ha, Minh Hoang |
Publisher | Ecole des Mines de Nantes |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds