"Practical usage of optimal portfolio diversification using maximum entropy principle" by Ostap Chopyk Abstract This thesis enhances the investigation of the principle of maximum entropy, implied in the portfolio diversification problem, when portfolio consists of stocks. Entropy, as a measure of diversity, is used as the objective function in the optimization problem with given side constraints. The principle of maximum entropy, by the nature itself, suggests the solution for two problems; it reduces the estimation error of inputs, as it has a shrinkage interpretation and it leads to more diversified portfolio. Furthermore, improvement to the portfolio optimization is made by using design-free estimation of variance-covariance matrices of stock returns. Design-free estimation is proven to provide superior estimate of large variance-covariance matrices and for data with heavy-tailed densities. To asses and compare the performance of the portfolios, their out-of-sample Sharpe ratios are used. In nominal terms, the out-of- sample Sharpe ratios are almost always lower for the portfolios, created using maximum entropy principle, than for 'classical' Markowitz's efficient portfolio. However, this out-of-sample Sharpe ratios are not statistically different, as it was tested by constructing studentized time-series...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:350274 |
Date | January 2015 |
Creators | Chopyk, Ostap |
Contributors | Krištoufek, Ladislav, Kraicová, Lucie |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds