Return to search

Evaluating SLAM algorithms for Autonomous Helicopters

<p>Navigation with unmanned aerial vehicles (UAVs) requires good knowledge of the current position and other states. A UAV navigation system often uses GPS and inertial sensors in a state estimation solution. If the GPS signal is lost or corrupted state estimation must still be possible and this is where simultaneous localization and mapping (SLAM) provides a solution. SLAM considers the problem of incrementally building a consistent map of a previously unknown environment and simultaneously localize itself within this map, thus a solution does not require position from the GPS receiver.</p><p>This thesis presents a visual feature based SLAM solution using a low resolution video camera, a low-cost inertial measurement unit (IMU) and a barometric pressure sensor. State estimation in made with a extended information filter (EIF) where sparseness in the information matrix is enforced with an approximation.</p><p>An implementation is evaluated on real flight data and compared to a EKF-SLAM solution. Results show that both solutions provide similar estimates but the EIF is over-confident. The sparse structure is exploited, possibly not fully, making the solution nearly linear in time and storage requirements are linear in the number of features which enables evaluation for a longer period of time.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-12282
Date January 2008
CreatorsSkoglund, Martin
PublisherLinköping University, Department of Electrical Engineering, Institutionen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text

Page generated in 0.1797 seconds